

Tutorial de Teste

Tipo de Equipamento: Relé de Proteção

Marca: SIEMENS

Modelo: 7SA611

Funções: 21 ou PDIS - Distância

Ferramenta Utilizada: <u>CE-6006, CE-6706, CE-6710, CE-7012</u>

ou CE-7024

Objetivo: Teste de Busca e de ponto das Zonas com

Característica Quadrilateral.

Controle de Versão:

Versão	Descrições	Data	Autor	Revisor
1.0	Versão inicial	16/11/2015	A.C.S.	M.R.C.

Home Page: www.conprove.com.br - E-mail: conprove@conprove.com.br

1

Sumário

1.	Conexão do relé ao CE-6006	5
1.1	Fonte Auxiliar	5
1.2	Bobinas de Corrente e Tensão	5
1.3	Entradas Binárias	6
2.	Comunicação com o relé 7UM	6
3.	Parametrização do relé 7SA	7
3.1	Device Configurations	7
3.2	Masking I/O	8
3.3	Power System Data 1	9
3.4	Power System	10
3.5	Power System	10
3.6	Setting Group A	11
3.7	Power System Data 2	12
3.8	21 Distance Protection/ General settings	12
3.9	21 Impedance Distance Zones (Quadrilateral)	13
4.	Ajustes do software Distanc	16
4.1	Abrindo o Distanc	16
4.2	Configurando os Ajustes	17
4.3	Sistema	18
4.4	Ajustes Distância	19
4.5	Tela Distância > Ajuste Prot. Distância	19
4.6	Inserindo as Zonas de Fase	19
4.7	Inserindo as Zonas (Fase-Terra)	22
5.	Configurações de Hardware	24
6.	Direcionamento de Canais	24
7.	Restauração do Layout	25
8.	Estrutura do teste para a função 21	25
8.1	Configurações de Teste	25
8.2	Teste de Ponto para as Zonas 1,2,3 e 4	26
8.2.	1 Loop Bifásico e trifásico	26
8.2.	2 Resultado Final Falta A-B-C	28
8.2.	3 Loop Monofásico	29
8.2.	4 Resultado Final Falta AE	31

	INSTRUMENTOS PARA TESTES ELÉTRICOS	
8.3	Teste de Busca para as Zonas 1,2,3 e 4	32
8.3.1	Loop Bifásico e trifásico	32
8.3.2	Resultado Final Falta A-B-C	34
8.3.3	Loop Monofásico	34
8.3.4	Resultado Final Falta AE	36
9. F	Relatório	37
APÊN	NDICE A	38
A.1 D	Designações de terminais	38
Α.2 Γ	Dados Técnicos	39
ΔDÊN	NDICE R	40

Termo de Responsabilidade

As informações contidas nesse tutorial são constantemente verificadas. Entretanto, diferenças na descrição não podem ser completamente excluídas; desta forma, a CONPROVE se exime de qualquer responsabilidade, quanto a erros ou omissões contidos nas informações transmitidas.

Sugestões para aperfeiçoamento desse material são bem vindas, bastando o usuário entrar em contato através do email suporte@conprove.com.br.

O tutorial contém conhecimentos obtidos dos recursos e dados técnicos no momento em que foi escrito. Portanto a CONPROVE reserva-se o direito de executar alterações nesse documento sem aviso prévio.

Este documento tem como objetivo ser apenas um guia, o manual do equipamento a ser testado deve ser sempre consultado.

O equipamento gera valores de correntes e tensões elevadas durante sua operação. O uso indevido do equipamento pode acarretar em danos materiais e físicos.

Somente pessoas com qualificação adequada devem manusear o instrumento. Observa-se que o usuário deve possuir treinamento satisfatório quanto aos procedimentos de manutenção, um bom conhecimento do equipamento a ser testado e ainda estar ciente das normas e regulamentos de segurança.

Copyright

Copyright © CONPROVE. Todos os direitos reservados. A divulgação, reprodução total ou parcial do seu conteúdo, não está autorizada, a não ser que sejam expressamente permitidos. As violações são passíveis de sansões por leis.

INSTRUMENTOS PARA TESTES ELÉTRICOS Sequência para testes do relé 7SA no software Distanc

1. Conexão do relé ao CE-6006

No apêndice A mostram-se as designações dos terminais do relé.

1.1 Fonte Auxiliar

Ligue o positivo (borne vermelho) da Fonte Aux. Vdc ao pino F1 (U_H+) do relé e o negativo (borne preto) da Fonte Aux Vdc ao pino F2 (U_H-) do relé.

1.2 Bobinas de Corrente e Tensão

Para estabelecer a conexão das bobinas de tensão, ligue os canais V1, V2 e V3 com os pinos R15, R17 e R18 do terminal do relé e os comuns ao pino R16. Para estabelecer a conexão das bobinas de corrente, ligue os canais I4, I5 e I6 com os pinos Q1, Q3 e Q5 do terminal do relé e faça um curto circuito entre os pinos Q2, Q4 e Q6, por fim conecte o pino Q6 ao Q8 e ligue os comuns dos canais de corrente ao pino Q7.

Figura 2

1.3 Entradas Binárias

Ligue a entrada binária do CE-6006 à saída binária do relé, BI1 ao pino R1 e o seu comum a R5 dessa maneira monitora-se o sinal de trip enviado pelo relé.

Figura 3

2. Comunicação com o relé 7UM

Primeiramente abre-se o "DIGSI" e liga-se um cabo ethernet (ou serial) do notebook com o relé. Em seguida clica-se duas vezes no ícone do software.

Figura 4

Ao abrir o programa, seleciona-se a subestação que contenha o relé em questão (7SA). Após selecionado o relé, clique com o botão direito e selecione a opção "Open Object" e depois selecione o modo de conexão, conforme é apresentado nas figuras seguintes.

Figura 5

Figura 6

3. Parametrização do relé 7SA

3.1 Device Configurations

Após ter sido estabelecida a conexão, acesse os ajustes gerais do relé através de um duplo clique com o botão esquerdo em "Settings" repita a operação para "Device Configuration".

Na tela "Functional Scope" desabilite todas as funções deixando apenas as funções "21 Distance protection pickup program" e "Trip mode" habilitadas. Isso evita que trips de outras funções interfiram no teste. Após os ajustes clique em "OK".

Figura 8

3.2 Masking I/O

O próximo passo é ajustar a saída do relé. Para acessar esses parâmetros efetue um duplo clique com o botão esquerdo em "Masking I/O (Configuration Matrix)" conforme ilustrado na próxima figura.

Rua Visconde de Ouro Preto, 77 - Bairro Custódio Pereira - Uberlândia - MG - CEP 38405-202 Fone (34) 3218-6800 Fax (34) 3218-6810

Designa-se a saída binária BO1 para o envio do trip das zonas 1, 2, 3 e 4. De maneira a auxiliar o teste utiliza-se o LED 1 para sinalizar o envio de trip da zona 1, o LED 2 para sinalizar o envio de trip da zona 2, o LED 3 para sinalizar o envio de trip da zona 3 e o LED 4 para sinalizar o envio de trip da zona 4.

Figura 10

3.3 Power System Data 1

Efetua-se um duplo clique em "Power System Data 1" para acessar os ajustes do sistema.

Figura 11

Aqueles ajustes destacados em vermelho necessitam de uma atenção especial. Primeiramente mostram-se os dados de TP e TC, em seguida os dados do sistema e por fim dados sobre o disjuntor.

3.4 Power System

Na aba "Transformers" configura-se a relação de TC e TP do sistema.

Figura 12

3.5 Power System

Na aba "Power System" ajusta-se a frequência nominal, a sequência de fase, se o sistema é aterrado e como será feita a compensação de terra para faltas à terra.

Figura 13

3.6 Setting Group A

Nesta opção ajustam-se dados importantes sobre a linha de transmissão protegida e os parâmetros da função de impedância, cujos cálculos serão demonstrados mais adiante.

Figura 14

Com um duplo clique na opção "Power System Data 2".

Figura 15

3.7 Power System Data 2

Na aba "*Power System*" parametrizam-se dados importantes como: medição de fundo de escala de tensão e corrente, ângulo da linha, ângulo de inclinação da característica de distância e os fatores de compensação para faltas à terra. As outras abas não interessam para esse teste.

Figura 16

3.8 21 Distance Protection/ General settings

O próximo passo na aba "General" é ativar a função 21, desabilitar a compensação série da linha e ajustar a compensação de carga, que nesse caso será infinita.

Figura 17

Na aba "Time Delays" ajusta-se as temporizações de cada zona, tanto para faltas trifásicas quanto para faltas à terra.

Figura 18

3.9 21 Impedance Distance Zones (Quadrilateral)

Ajuste os valores de impedância das zonas 1, 2, 3 e 4 para faltas trifásicas/monofásicas e suas respectivas temporizações. Nesse teste não será utiliza a zona Z1B.

Figura 19

Figura 20

Figura 21

Figura 22

4. Ajustes do software Distanc

4.1 Abrindo o Distanc

Clique no ícone do gerenciador de aplicativos *CTC*.

Figura 23

Efetue um duplo clique no ícone do software "Distanc".

Figura 24

Figura 25

4.2 Configurando os Ajustes

Ao abrir o software a tela de "Ajustes" abrirá automaticamente (desde que a opção "Abrir Ajustes ao Iniciar" encontrado no menu "Opções Software" esteja selecionada). Caso contrário clique diretamente no ícone "Ajustes".

Figura 26

Dentro da tela de "Ajustes" preencha a aba "Inform. Gerais" com dados do dispositivo testado, local da instalação e o responsável. Isso facilita a elaboração do relatório sendo que essa aba será a primeira a ser mostrada.

Figura 27

4.3 Sistema

Na tela a seguir dentro da sub aba "Nominais" são configurados os valores de frequência, sequencia de fase, tensões primárias e secundárias, correntes primárias e secundárias, relações de transformação de TPs e TCs. Existe ainda duas sub abas "Impedância" e "Fonte" cujos dados não são relevantes para esse teste.

Figura 28

Existem outras abas onde o usuário pode inserir notas e observações, figuras explicativas, pode criar um "check list" dos procedimentos para realização de teste e ainda criar um esquema com toda a pinagem das ligações entre mala de teste e o equipamento de teste.

4.4 Ajustes Distância

Nota: O relé será parametrizado de maneira distinta para faltas fase-terra em relação às fases bifásicas e trifásicas. Para que o software realize o teste adequadamente deve-se inserir 8 tipos de zonas, sendo as quatro primeiras para faltas bifásicas e trifásicas e as quatro últimas para faltas fase-terra.

4.5 Tela Distância > Ajuste Prot. Distância

O primeiro passo é ajustar o fator de compensação de terra.

Figura 29

4.6 Inserindo as Zonas de Fase

A primeira zona a ser inserida será a zona-1 (FF+ABC). Clique no campo "Inserir" destacado na cor verde da figura anterior. Na tela de ajustes, primeiramente escolhese a máscara do relé "Siemens 7SA - Quadr.". Deve-se ajustar o tempo de atuação, escolher o tipo de falta (loop), inserir as características da zona e a direcionalidade. Ajuste os valores das tolerâncias e por fim clique em "OK".

Figura 30

Clicando novamente em "inserir" ajustam-se os valores para zona 2.

Figura 31

20

Clicando em "Inserir" ajustam-se os valores para zona 3.

Figura 32

Clicando em "Inserir" ajustam-se os valores para zona 4.

Figura 33

4.7 Inserindo as Zonas (Fase-Terra)

A primeira zona FT a ser inserida será a zona-5 (FT). Clique no campo "Inserir" destacado na cor verde da figura anterior. Na tela de ajustes, primeiramente escolhese a máscara do relé "Siemens 7SA - Quadr.".

Figura 34

Figura 35

Figura 36

Figura 37

5. Configurações de Hardware

No menu "Início" clique no botão "Config Hrd." para configurar a fonte de alimentação, estipular a configuração dos canais de gerações e o método de parada das binárias de entrada.

Figura 38

6. Direcionamento de Canais

Após realizar a configuração do hardware clique no ícone destacado para associar os canais criados com os nós de modo automático. Escolha para isso a opção "Básico".

Figura 39

7. Restauração do Layout

Devido a grande flexibilidade que o software apresenta permitindo que o usuário escolha quais janelas sejam apresentadas e em qual posição utiliza-se o comando para restaurar as configurações padrões. Clique no botão "Layout" e em seguida em "Recriar Gráficos" repita o processo clicando em "Layout" e em "Restaurar Layout". No decorrer do teste são excluídas as janelas que não sejam relevantes

Figura 40

8. Estrutura do teste para a função 21

8.1 Configurações de Teste

Clicando na aba configurações ajuste o modo de teste para "Inteligente" e utilize entrada binária 1 para parada de cronômetro. Insira uma pré- falta com tensão nominal e corrente igual a zero.

Figura 41

8.2 Teste de Ponto para as Zonas 1,2,3 e 4

8.2.1 Loop Bifásico e trifásico

Clique na aba "Teste de Ponto" e em seguida "Sequência" escolha os tipos de falta nesse caso somente faltas trifásicas e bifásicas, ou seja, ABC, AB, BC e CA.

Figura 42

Escolha um ângulo inicial, final e o passo. Desse modo os pontos são determinados de forma automática.

Figura 43

Clicando no botão "Confirmar" os seguintes pontos são criados.

Figura 44

Inicie a geração clicando no ícone destacado a seguir ou através do atalho "Alt + G".

Figura 45

O resultado final é mostrado abaixo mostrando as características das zonas. Para aplicar um zoom clique com o botão esquerdo e arraste definindo a região a ser aumentada em seguida solte o botão.

Resultado Final Falta A-B-C

Clicando na aba "ABC" verifica-se o resultado final. Observa-se que todos os pontos estão dentro das tolerâncias dadas pelo fabricante de modo que o teste está aprovado.

Figura 46

Clicando na aba "ABC" verifica-se o resultado final. Observa-se que todos os pontos estão dentro das tolerâncias dadas pelo fabricante de modo que o teste está aprovado.

Rua Visconde de Ouro Preto, 77 - Bairro Custódio Pereira - Uberlândia - MG - CEP 38405-202 Fone (34) 3218-6800 Fax (34) 3218-6810 Home Page: www.conprove.com.br -

8.2.3 Loop Monofásico

Clique na aba "Teste de Ponto" e em seguida "Sequência" escolha os tipos de falta nesse caso somente faltas monofásicas, ou seja, AT, BT e CT.

Figura 48

Escolha um ângulo inicial, final e o passo. Desse modo os pontos são determinados de forma automática.

Figura 49

Clicando no botão "Confirmar" os seguintes pontos são criados.

Figura 50

Inicie a geração clicando no ícone destacado a seguir ou através do atalho "Alt + G".

Figura 51

O resultado final é mostrado abaixo mostrando as características das zonas. Para aplicar um zoom clique com o botão esquerdo e arraste definindo a região a ser aumentada em seguida solte o botão.

8.2.4 Resultado Final Falta AE

Clicando na aba "AE" verifica-se o resultado final. Observa-se que todos os pontos estão dentro das tolerâncias dadas pelo fabricante de modo que o teste está aprovado.

Figura 52

Clicando na aba "BE" verifica-se o resultado final. Observa-se que todos os pontos estão dentro das tolerâncias dadas pelo fabricante de modo que o teste está aprovado.

Figura 53

8.3 Teste de Busca para as Zonas 1,2,3 e 4

8.3.1 Loop Bifásico e trifásico

Clique na aba "Teste de Busca" destacado de verde na figura anterior e em seguida, na aba "Inserir/Editar Pontos" clique no botão "Sequência". Escolha os tipos de falta nesse caso somente faltas trifásicas e bifásicas, ou seja, ABC, AB, BC e CA.

Figura 54

Escolha um ponto inicial como sendo a origem, ajuste um valor de comprimento, escolha um ângulo inicial, final e o passo. Desse modo as linhas de busca são traçadas de forma automática.

Figura 55

Clicando no botão "Confirmar" as seguintes linhas de busca são criadas.

Figura 56

Inicie a geração clicando no ícone destacado a seguir ou através do atalho "Alt + G".

Figura 57

O resultado final é mostrado abaixo mostrando as características das zonas. Para aplicar um zoom clique com o botão esquerdo e arraste definindo a região a ser aumentada em seguida solte o botão.

8.3.2 Resultado Final Falta A-B-C

Clicando na aba "ABC" verifica-se o resultado final. Observa-se que todos os pontos estão dentro das tolerâncias dadas pelo fabricante de modo que o teste está aprovado.

Figura 58

8.3.3 Loop Monofásico

Clique na aba "*Teste de Ponto*" e em seguida "*Sequência*" escolha os tipos de falta nesse caso somente faltas monofásicas, ou seja, AT, BT e CT.

Figura 59

Escolha um ângulo inicial, final e o passo. Desse modo os pontos são determinados de forma automática.

Figura 60

Clicando no botão "Confirmar" os seguintes pontos são criados.

Figura 61

Inicie a geração clicando no ícone destacado a seguir ou através do atalho "Alt + G".

Figura 62

O resultado final é mostrado abaixo mostrando as características das zonas. Para aplicar um zoom clique com o botão esquerdo e arraste definindo a região a ser aumentada em seguida solte o botão.

8.3.4 Resultado Final Falta AE

Clicando na aba "AE" verifica-se o resultado final. Observa-se que todos os pontos estão dentro das tolerâncias dadas pelo fabricante de modo que o teste está aprovado.

Figura 63

9. Relatório

Após finalizar o teste clique no ícone destacado na figura anterior ou através do comando "Ctrl + R" para chamar a tela de pré-configuração do relatório. Escolha a língua desejada assim como as opções que devem fazer parte do relatório.

Figura 64

Figura 65

APÊNDICE A

A.1 Designações de terminais

7SA6*1*-*B/K

Figura A-4 Diagrama geral para 7SA6*1*-*B/K (montagem embutida em painel ou montagem em cubículo)

Figura 66

A.2 Dados Técnicos

Tabela 1 – Medição de Impedância

Característica	Poligonal, 3 estágios independentes	
Impedância Z1 (secundária, baseada em $I_N = 1 A$)	$0.05~\Omega$ a 130.00 Ω	incrementos 0.01 Ω
Impedância Z1 (secundária, baseada em $I_N = 5 A$)	0.01 Ω a 26.00 Ω	
Imped. Z1B (secundária, baseada em I _N = 1 A)	0.05 Ω a 65.00 Ω	incrementos 0.01 Ω
Imped. Z1B (secundária, baseada em I _N = 5 A)	0.01 Ω a 13.00 Ω	
Imped. Z2 (secundária, baseada em I _N = 1 A)	0.05 Ω a 65.00 Ω	incrementos 0.01 Ω
Imped. Z2 (secundária, baseada em I _N = 5 A)	0.01 Ω a 13.00 Ω	
Tolerâncias de medição conforme VDE 0435 com grandezas senoidais	$ \Delta Z/Z \le 5 \%$ para 30° \le	φ _K ≤ 90° ou 10 mΩ

Tabela 2 - Tempos

Temporizações	0.00 s a 60.00 s ou ∞ (ineficaz)	incrementos 0.01 s
Tempo mais curto de Trip	35 ms	
Tempo Típico de Trip	Aprox. 40 ms	
Tempo de Dropout	Aprox. 50 ms	
Tempo de Espera da Subtensão com selo	0.10 s a 60.00 s	incrementos 0.01 s
Tolerâncias de Temporização	1 % do valor de ajuste ou 10 ms	
	1	

APÊNDICE B

Equivalência de parâmetros do software e o relé em teste.

Tabela 3

ParâmetroFiguraParâmetroIMod Z0/Z129Zero seq. comp. K0 for Z1Ang Z0/Z129Zero seq. comp. Angle for Z1	16 16 16	
	16	
Ang Z0/Z1 29 Zero seq. comp. Angle for Z1	16	
Zn1_Fase Phase Distance Z1		
Distance Angle 30 Angle of inclination, distance charact.		
Foward/Reverse/Non-Directional 30 Operating mode Z1	19	
R 30 R(Z1), Resistance for ph-ph faults	19	
X 30 X(Z1), Reactance	19	
Temp. Disp. 30 T1 multi-ph, delay for multiphase faults	19	
Zone Reduction 30 Zone Reduction Angle	19	
Zn2_Fase Phase Distance Z2		
Distance Angle 31 Angle of inclination, distance charact.	16	
Foward/Reverse/Non-Directional 31 Operating mode Z2	20	
R 31 R(Z2), Resistance for ph-ph faults	20	
X 31 X(Z2), Reactance	20	
Temp. Disp. 31 T2 multi-ph, delay for multiphase faults	20	
Zone Reduction 31 Zone Reduction Angle	20	
Zn3_Fase Phase Distance Z3	Phase Distance Z3	
Distance Angle 32 Angle of inclination, distance charact.	16	
Foward/Reverse/Non-Directional 32 Operating mode Z3	21	
R 32 R(Z3), Resistance for ph-ph faults	21	
X 32 X(Z3), Reactance	21	
Temp. Disp. 32 T3 multi-ph, delay for multiphase faults	21	
Zone Reduction 32 Zone Reduction Angle	21	
Zn4_Fase Phase Distance Z4		
Distance Angle 33 Angle of inclination, distance charact.	16	
Foward/Reverse/Non-Directional 33 Operating mode Z4	22	
R 33 R(Z4), Resistance for ph-ph faults	22	
X 33 X(Z4), Reactance	22	
Temp. Disp. 33 T4 multi-ph, delay for multiphase faults	22	
Zone Reduction 33 Zone Reduction Angle	22	

Software Distanc		Relé Siemens 7SA611	
Parâmetro Figura		Parâmetro	Figura
Zn1_Terra		Ground Distance Z1	
Distance Angle	34	Angle of inclination, distance charact.	16
Foward/Reverse/Non-Directional	34	Operating mode Z1	19
RE	34	RG(Z1), Resistance for ph-gnd faults	19
X	34	X(Z1), Reactance	19
Temp. Disp.	34	T1 1-ph, delay for multiphase faults	19
Zone Reduction	34	Zone Reduction Angle	19
Zn2_Terra		Ground Distance Z2	
Distance Angle	35	Angle of inclination, distance charact.	16
Foward/Reverse/Non-Directional	35	Operating mode Z2	20
RE	35	RG(Z2), Resistance for ph-gnd faults	20
X	35	X(Z2), Reactance	20
Temp. Disp.	35	T2 1-ph, delay for multiphase faults	20
Zone Reduction	35	Zone Reduction Angle	20
Zn3_Terra		Ground Distance Z3	
Distance Angle	36	Angle of inclination, distance charact.	16
Foward/Reverse/Non-Directional	36	Operating mode Z3	21
RE	36	RG(Z3), Resistance for ph-gnd faults	21
X	36	X(Z3), Reactance	21
Temp. Disp.	36	T3 1-ph, delay for multiphase faults	21
Zone Reduction	36	Zone Reduction Angle	21
Zn4_Terra		Ground Distance Z4	
Distance Angle	37	Angle of inclination, distance charact.	16
Foward/Reverse/Non-Directional	37	Operating mode Z4	22
RE	37	RG(Z4), Resistance for ph-gnd faults	22
X	37	X(Z4), Reactance	22
Temp. Disp.	37	T4 1-ph, delay for multiphase faults	22
Zone Reduction	37	Zone Reduction Angle	22