

CONPROVE INDÚSTRIA E COMÉRCIO LTDA.

ANÁLISE DE EQUIVALÊNCIA:

SOFTWARES <u>ATP</u> (ALTERNATIVE TRANSIENTS PROGRAM) <u>E</u> <u>PS SIMUL</u> (POWER SYSTEM SIMULATOR)

UBERLÂNDIA 2019

Termo de Responsabilidade

As informações contidas nesse documento são constantemente verificadas. Entretanto, diferenças na descrição não podem ser completamente excluídas; desta forma, a CONPROVE se exime de qualquer responsabilidade, quanto a erros ou omissões contidos nas informações transmitidas.

Sugestões para aperfeiçoamento desse material são bem vindas, bastando o usuário entrar em contato através do email <u>suporte@conprove.com.br</u>.

O documento contém conhecimentos obtidos dos recursos e dados técnicos no momento em que foi escrito. Portanto a CONPROVE reserva-se o direito de executar alterações nesse documento sem aviso prévio.

Copyright

Copyright © CONPROVE. Todos os direitos reservados. A divulgação, reprodução total ou parcial do seu conteúdo, não está autorizada, a não ser que sejam expressamente permitidos. As violações são passíveis de sansões por leis.

Copyright por CONPROVE INDÚSTRIA E COMÉRCIO LTDA, 2019.

Todos os direitos reservados.

Proibida a reprodução total ou parcial.

Nenhuma parte desta obra, Poderá ser apropriada Sem autorização da CONPROVE INDÚSTRIA E COMÉRCIO LTDA.

O software PS Simul foi desenvolvido e produzido no Brasil Pela CONPROVE INDÚSTRIA E COMÉRCIO LTDA, sob responsabilidade do engenheiro eletricista **Paulo Sérgio Pereira,** Crea 11.348

CONPROVE INDÚSTRIA E COMÉRCIO LTDA

Fone (34) 3218-6800 / Fax (34) 3218-6810 Rua Visconde de Ouro Preto, 77 Bairro Custódio Pereira - CEP 38.405-202 Uberlândia - MG - Brasil

Controle de Versão

Versão	Descrições	Data	Autor	Revisor
1.0	Versão Inicial	12/03/2019	M.J.B.B.D	G.S.S.

Sumário

1	Capí	tulo 01 – Introdução	21
2	Capí	tulo 02 – Fontes.	23
	2.1	Cenário 01 - Fonte DC (DC Type 11)	23
	2.2	Cenário 02 – Fonte Rampa (Ramp Type 12)	24
	2.3	Cenário 03 - Fonte Rampa (Slope Ramp Type 13)	25
	2.4	Cenário 04 - Fonte AC monofásica (AC Type 14)	26
	2.5	Cenário 05 - Fonte AC trifásica (AC 3-ph Type 14)	27
	2.6	Cenário 06 - Fonte Surto Dupla Exponencial (Surge Type 15)	28
	2.7	Cenário 07 - Fonte Surto Heidler (Heidler Type 15)	29
	2.8	Cenário 08 – Fonte Surto Standler (Standler Type 15)	30
	2.9	Cenário 09 – Fonte Surto CIGRÉ (CIGRÉ Type 15)	31
3	Capí	tulo 03 – Chaves	32
	3.1	Cenário 01 - Chave monofásica controlada por tempo	32
	3.2	Cenário 02 - Chave trifásica controlada por tempo	33
	3.3	Cenário 03 - Chave monofásica controlada por tensão	34
	3.4	Cenário 04 - Diodo	35
	3.5	Cenário 05 - Tiristor	36
	3.6	Cenário 06 - Triac	37
	3.7	Cenário 07 – Chave Estatística	38
	3.8	Circuitos modelados para as validações realizadas	39
	3.8.1	Cenário 01 - Chaves monofásicas controladas por tempo (3.1)	39
	3.8.2	Cenário 02 - Chaves trifásicas controladas por tempo (3.2).	39
	3.8.3	Cenário 03 - Chaves monofásicas controladas por tensão (3.3).	39
	3.8.4	Cenário 04 - Diodos (3.4).	39
	3.8.5	Cenário 05 - Tiristores (3.5).	40
	3.8.6	Cenário 06 - TRIAC (3.6)	40
4	Capí	tulo 04 - Elementos Passivos	41
•	4.1	Cenário 01 - Energização de circuito RL com fonte DC no instante $t = 0s$.	41
	4.2	Cenário 02 - Energização de circuito RC com fonte DC no instante t = 0s.	43
	4.3	Cenário 03 - Energização de circuito LC com fonte DC no instante t = 0s	45
	4.4 iniciais	Cenário 04 - Energização de circuito RL com fonte DC no instante t = 0s, com condições de corrente na indutância.	47
	4.5 iniciais	Cenário 05 - Energização de circuito RC com fonte DC no instante t = 0s, com condições de tensão na capacitância.	49
	4.6	Cenário 06 - Energização de circuito RLC com fonte DC no instante t = 0s	51
	4.7	Cenário 07 - Energização de circuito RL com fonte AC no instante t = 0s.	53
	4.8	Cenário 08 - Energização de circuito RC com fonte AC no instante t = 0s.	55
	4.9	Cenário 09 - Energização de circuito LC com fonte AC no instante t = 0s	57
	4.10 iniciais	Cenário 10 - Energização de circuito RL com fonte AC no instante t = 0s, com condições de corrente na indutância.	59
	4.11 iniciais	Cenário 11 - Energização de circuito RC com fonte AC no instante t = 0s, com condições de tensão na capacitância.	61
	4.12	Cenário 12 - Energização de circuito RLC com fonte AC no instante t = 0s	63

4	.13	Cenário 13 - Energização de circuito RL trifásico.	65
4	.14	Cenário 14 - Energização de circuito RC trifásico	67
4	.15	Cenário 15 - Energização de circuito LC trifásico.	69
4	.16	Cenário 16 - Energização de circuito RLC trifásico.	71
4	.17	Circuitos modelados para as validações realizadas	73
	4.17.	.1 Cenário 01 – Energização RL com fonte DC (4.1)	.73
	4.17.2	.2 Cenário 02 – Energização RC com fonte DC (4.2)	.73
	4.17.	.3 Cenário 03 – Energização LC com fonte DC (4.3)	.73
	4.17.4	.4 Cenário 04 – Energização RL com fonte DC – Condições Iniciais (4.4)	.73
	4.17.	.5 Cenário 05 – Energização RC com fonte DC – Condições Iniciais (4.5)	.74
	4.17.	.6 Cenário 06 – Energização RLC com fonte DC (4.6)	.74
	4.17.	.7 Cenário 07 – Energização RL com fonte AC (4.7)	.74
	4.17.	.8 Cenário 08 – Energização RC com fonte AC (4.8)	.74
	4.17.	.9 Cenário 09 – Energização LC com fonte AC (4.9)	.75
	4.17.	.10 Cenário 10 – Energização RL com fonte AC – Condições Iniciais (4.10)	.75
	4.17.	.11 Cenário 11 – Energização RC com fonte AC – Condições Iniciais (4.11)	.75
	4.17.	.12 Cenário 12 – Energização RLC com fonte AC (4.12)	.75
	4.17.	.13 Cenário 13 – Energização RL trifásico (4.13)	.76
	4.17.	.14 Cenário 14 – Energização RC trifásico (4.14)	.76
	4.17.	.15 Cenário 15 – Energização LC trifásico (4.15)	.76
	4.17.	.16 Cenário 16 – Energização RLC trifásico (4.16)	.76
5	Capi	ítulo 05 - Elementos Não Lineares	77
5	5.1	Cenário 01 - Resistência não linear (type 99) alimentada por tensão AC	77
5	5.2	Cenário 02 - Resistência não linear (type 92) alimentada por tensão AC	79
5	5.3	Cenário 03 - Resistência não linear (type 97) alimentada por tensão AC	81
5	6.4	Cenário 04 - Resistência não linear (type 91) alimentada por tensão AC.	82
5	5.5	Cenário 05 - Indutância não linear (type 98) alimentada por tensão AC.	83
5	5.6	Cenário 06 - Indutância não linear (type 93) alimentada por tensão AC.	85
5	5.7	Cenário 07 - Indutância não linear (type 96) alimentada por tensão AC.	87
5	5.8	Cenário 08 - Resistência variável entrada externa alimentada por tensão AC	89
5	5.9	Cenário 09 - MOV (Metal Oxide Varist.) type 92 alimentado por tensão AC	90
5	5.10	Circuitos modelados para as validações realizadas	91
	5.10.	.1 Cenário 01 - Resistência não linear (type 99) alimentada por tensão AC (5.1)	.91
	5.10.2	.2 Cenário 02 - Resistência não linear (type 92) alimentada por tensão AC (5.2)	.91
	5.10.	.3 Cenário 03 - Resistência não linear (type 97) alimentada por tensão AC (5.3)	.91
	5.10.4	.4 Cenário 04 - Resistência não linear (type 91) alimentada por tensão AC (5.4)	.91
	5.10.	.5 Cenário 05 - Indutância não linear (type 98) alimentada por tensão AC (5.5)	.91
	5.10.	.6 Cenário 06 - Indutância não linear (type 93) alimentada por tensão AC (5.6)	.92
	5.10.	.7 Cenário 07 - Indutância não linear (type 96) alimentada por tensão AC (5.7)	.92
	5.10.	.8 Cenário 08 - Resistência variável (entrada externa) (5.8)	.92
	5.10.9	.9 Cenário 09 - MOV (Metal Oxide Varistor) type 92 (5.9)	.92
6 6	Capi 5.1	ítulo 06 – Transformadores Cenário 01 – Transformador monofásico ideal	93 93

	6.3		
		Cenario 03 – Transformador trifasico ideal Y - Y.	97
	6.4	Cenário 04 – Transformador trifásico real Y-A.	99
	6.5	Cenário 05 – Autotransformador trifásico real (2 enrolamentos).	101
	6.6	Cenário 06 – Transformador trifásico real Y-Y-D	103
	6.7	Cenário 07 – Autotransformador trifásico real com terciário D	106
	6.8	Cenário 08 – Transformador trifásico real Δ -Y (saturação)	109
	6.9	Circuitos modelados para as validações realizadas	111
	6.9.1	Cenário 01 – Transformador monofásico ideal (6.1).	.111
	6.9.2	Cenário 02 – Transformador monofásico real (6.2)	.111
	6.9.3	Cenário 03 – Transformador trifásico ideal Y-Y (6.3).	.111
	6.9.4	Cenário 04 – Transformador trifásico real Y-Δ (6.4).	.111
	6.9.5	Cenário 05 – Autotransformador trifásico real (2 enrolamentos) (6.5)	.112
	6.9.6	Cenário 06 – Transformador trifásico real Y-Y-D (6.6).	.112
			.112
	6.9.7	Cenário 07 – Autotransformador trifásico real com terciário D (6.7)	.112
	6.9.8	Cenário 08 Transformador trifásico real Δ -Y (saturação) (6.8)	.113
7	Capí	tulo 07 - Linhas e Cabos	114
	7.1	Cenário 01 – Linha PI monofásica	114
	7.2	Cenário 02 – Linha PI trifásica.	116
	7.3	Cenário 03 – Linha Bergeron monofásica	118
	7.4	Cenário 04 – Linha Bergeron trifásica (Transposta).	120
	7.5	Cenário 05 – Linha Bergeron trifásica (Cadastro por Geometria).	122
	7.6	Cenário 06 – Linha com Modelagem em Frequência trifásica (Cadastro por Geometria)	125
	7.7	Cenário 07 – Cabos Modelo Bergeron (Subterrâneo).	128
	7.8	Circuitos modelados e curvas cadastradas para as validações realizadas	133
	7.8.1	Cenário 01 – Linha PI monofásica (7.1).	.133
	7.8.2	Cenário 02 – Linha PI trifásica (7.2).	.133
	7.8.3	Cenário 03 – Linha Bergeron monofásica (7.3)	.133
	7.8.4	Cenário 04 – Linha Bergeron trifásica (Transposta) (7.4).	.133
	7.8.5	Cenário 05 – Linha Bergeron trifásica (Cadastro por Geometria) (7.5).	.134
	7.8.6 (7.6).	Cenário 06 – Linha com Modelagem em Frequência trifásica (Cadastro por Geometria) 134	
	7.8.7	Cenário 07 – Cabos Modelo Bergeron (Subterrâneo) (7.7).	.134
8	Capí 8.1	tulo 08 – Máquinas Cenário 01 – Partida de um motor de indução - Rotor Gaiola	135 135
	8.2	Cenário 02 - Religamentos e desligamentos de motores em um sistema industrial	138
	8.3	Cenário 03 - Gerador de indução (Rotor Gaiola) alimentando cargas no sistema elétrico	140
	8.4	Cenário 04 – Partida de motor de indução – Rotor Bobinado	143
	8.5	Cenário 05 – Partida de uma máquina DC com estágios resistivos	147
	8.6 controla	Cenário 06 – Curto circuito em sistema isolado alimentado por gerador síncrono (sem dores de tensão ou potência mecânica)	149

8.7	Cenário 07 – Chaveamento de cargas em sistema isolado alimentado por gerador síncrono	150
	Cia ita a la la la companya di la companya di setta da la companya da	.152
8.8	Circuitos modelados para as validações realizadas	
8.8.1	Centrio 01 – Partida de um motor de indução - Rotor Gaiola (8.1).	155
8.8.2	Centrio 02 – Religamentos e desligamentos de motores em um sistema industrial (8.2). $(B_{2}, C_{1}, C_{2}, C_{2}$	155
8.8.3 (8.3)	 Cenario 03 – Gerador de indução (Rotor Gaiola) alimentando cargas no sistema eletrico 155 	
8.8.4	Cenário 04 – Partida de motor de indução – Rotor Bobinado (8.4)	156
8.8.5	6 Cenário 05 – Partida de uma máquina DC com estágios resistivos (8.5).	156
8.8.6 contr	6 Cenário 06 – Curto circuito em sistema isolado alimentado por gerador síncrono (sem roladores de tensão ou potência mecânica) (8.6).	157
8.8.7 (com	7 Cenário 07 – Chaveamento de cargas em sistema isolado alimentado por gerador síncron n regulação de tensão) (8.7).	o 157
9 Cap	ítulo 09 - Controle (TACS e FORTRAN) 1	58
9.1	Tabela de equivalências entre os controles ATP e PS Simul	158
9.2	Cenário 01 – Análises de parâmetros do sistema elétrico.	162
9.3	Cenário 02 – Modelagem de reguladores de tensão de máquinas	165
9.4	Cenário 03 – Controle Chave AC – Eletrônica de Potência	167
9.5	Cenário 04 – Modelagem de funções de proteção.	.171
9.6	Circuitos modelados para as validações realizadas	.174
9.6.1	Cenário 01 – Análises de parâmetros do sistema elétrico (9.2).	174
9.6.2	2 Cenário 02 – Modelagem de controladores de excitação de máquinas (9.3)	174
9.6.3	Cenário 03 – Controle Chave AC – Eletrônica de Potência (9.4)	174
9.6.4	Cenário 04 – Modelagem de funções de proteção (9.5).	175
10 C	Capítulo 10 - Análise de sistemas mais completos com ambos os softwares 1 Análise de Tensões de Restabelecimento Transitórias (TRT) em sistemas	76 176
10.1	.1 Formas de onda das correntes na chave CH1	178
10.1	.2 Formas de onda das correntes na chave CH2.	178
10.1	.3 Formas de onda das tensões F-F no primário do transformador TR1	179
10.1	.4 Formas de onda das tensões F-N no secundário do transformador TR1	180
10.1	.5 Análise da envoltória da TRT.	181
10.2	Chaveamento de bancos capacitivos.	183
10.2	.1 Cenário 01 – Banco de capacitores do consumidor é chaveado	184
10.2	.2 Cenário 02 – Banco de capacitores da subestação é chaveado	185
10.3	Simulação de descarga atmosférica em uma linha de transmissão	186
10.3	.1 Formas de onda das tensões na fase A em todos os trechos	188
10.3	.2 Formas de onda das correntes na carga resistiva.	189
10.4	Energização de transformadores trifásicos	190
10.4	.1 Cenário 01 – Energização não controlada.	191
10.4	.2 Cenário 02 – Energização controlada	192
10.5	Fenômeno de ferrorressonância em transformadores trifásicos.	194
10.5	.1 Forma de onda das tensões no primário do transformador	195
10.6	Religamento de linhas de transmissão.	196
10.6	.1 Cenário 01 – Desligamento e religamento com chaves ideais.	197

	10.6.2	Cenário 02 - Desligamento e religamento com resistência de pré-inserção	198
10	0.7 Ensa	ios de contingências em sistemas elétricos de transmissão.	199
	10.7.1	Cenário 01 - Falta monofásica na barra B8.	201
	10.7.2	Cenário 02 – Falta bifásica na barra B5	207
	10.7.3	Cenário 03 – Falta trifásica na barra B4	212
	10.7.4	Cenário 04 – Falta trifásica terra na barra B6	217
11	Capítu	ılo 11 – Conclusões	. 223
12	Capítu	ılo 12 – Referências	. 223

Índice de Figuras

Figura 1- Resultado Fonte DC no software ATP.	.23
Figura 2 - Resultado Fonte DC no software PS Simul.	.23
Figura 3 - Resultado Fonte Rampa Tipo 12 no software ATP.	.24
Figura 4 - Resultado Fonte Rampa Tipo 12 no software PS Simul.	.24
Figura 5- Resultado Fonte Rampa Tipo 13 no software ATP.	.25
Figura 6- Resultado Fonte Rampa Tipo 13 no software PS Simul.	.25
Figura 7- Resultado Fonte Senoidal monofásica no software ATP.	.26
Figura 8- Resultado Fonte Senoidal monofásica no software PS Simul	.26
Figura 9- Resultado Fonte Senoidal trifásica no software ATP.	.27
Figura 10- Resultado Fonte Senoidal trifásica no software PS Simul.	.27
Figura 11- Resultado Fonte Surto Dupla Exponencial Tipo 15 no software ATP	.28
Figura 12- Resultado Fonte Surto Dupla Exponencial no software PS Simul	.28
Figura 13- Resultado Fonte Surto Heidler Tipo 15 no software ATP.	.29
Figura 14- Resultado Fonte Surto Heidler Tipo 15 no software PS Simul.	.29
Figura 15- Resultado Fonte Surto Standler Tipo 15 no software ATP	.30
Figura 16- Resultado Fonte Surto Standler Tipo 15 no software PS Simul.	.30
Figura 17- Resultado Fonte Surto CIGRÉ Tipo 15 no software ATP.	.31
Figura 18- Resultado Fonte Surto CIGRÉ Tipo 15 no software PS Simul	31
Figura 19 Resultado da simulação com a chave monofásica no software ATP	32
Figura 20 - Resultado da simulação com a chave monofásica no software PS Simul	32
Figura 21- Resultado da simulação com a chave trifásica no software ATP	33
Figura 22 - Resultado da simulação com a chave trifásica no software PS Simul	33
Figura 23- Resultado da simulação com a chave controlada nor tensão no software ATP	34
Figura 24 - Resultado da simulação com a chave controlada por tensão no software PS Simul	34
Figura 25- Resultado da simulação com a ciado no software ATP	35
Figura 26 - Resultado da simulação com o diodo no software PS Simul	35
Figura 27 Resultado da simulação com o tiristor no software ATP	36
Figura 28 - Resultado da simulação com o tiristor no software PS Simul	36
Figura 20 - Resultado da simulação com o TPIAC no software ATP	30
Figura 20 - Resultado da simulação com o TRIAC no software AS Simul	37
Figura 30 - Resultado da simulação com o TRIAC no software i 5 Simul	30
Figura 31 – Circuitos modelados para validação das chaves trifósicas controladas por tempo	30
Figura 32 – Circuitos modelados para validação da chave controlada por tenção.	30
Figura 33 – Circuitos modelados para validação da diado	30
Figura 34 – Circuitos modelados para validação do diodo	.39
Figura 55 – Circuitos modelados para validação do Unistor	.40
Figura 50 – Circunos modelados para vandação do FIRIAC	.40
Figura 57- Forma de onda de tensão da simulação do circuito RL no software ATP.	.41
Figura 38 - Forma de onda de tensão da simulação do circuito KL no software PS Simul	41
Figura 39- Forma de onda de corrente da simulação do circulto RL no software A I P	.42
Figura 40 - Forma de onda de corrente da simulação do circuito RL no software PS Simul	.42
Figura 41- Forma de onda de tensão da simulação do circuito RC no software ATP.	.43
Figura 42 - Forma de onda de tensão da simulação do circuito RC no software PS Simul	.43
Figura 43- Forma de onda de corrente da simulação do circuito RC no software ATP.	.44
Figura 44 - Forma de onda de corrente da simulação do circuito RC no software PS Simul	.44
Figura 45- Forma de onda de tensão da simulação do circuito LC no software ATP.	.45
Figura 46 - Forma de onda de tensão da simulação do circuito LC no software PS Simul	.45
Figura 47- Forma de onda de corrente da simulação do circuito LC no software ATP	.46
Figura 48 - Forma de onda de corrente da simulação do circuito LC no software PS Simul.	.46
Figura 49- Forma de onda de tensão da simulação do circuito RL no software ATP.	47
Figura 50 - Forma de onda de tensão da simulação do circuito RL no software PS Simul	.47
Figura 51- Forma de onda de corrente da simulação do circuito RL no software ATP	.48
Figura 52 - Forma de onda de corrente da simulação do circuito RL no software PS Simul	.48
Figura 53- Forma de onda de tensão da simulação do circuito RC no software ATP.	.49
Figura 54 - Forma de onda de tensão da simulação do circuito RC no software PS Simul	.49
Figura 55- Forma de onda de corrente da simulação do circuito RC no software ATP.	50

Figura 56 - Forma de onda de corrente da simulação do circuito RC no software PS Simul	.50
Figura 57- Forma de onda de tensão da simulação do circuito RLC no software ATP	.51
Figura 58 - Forma de onda de tensão da simulação do circuito RLC no software PS Simul	.51
Figura 59- Forma de onda de corrente da simulação do circuito RLC no software ATP	.52
Figura 60 - Forma de onda de corrente da simulação do circuito RLC no software PS Simul	.52
Figura 61- Forma de onda de tensão da simulação do circuito RL no software ATP.	.53
Figura 62 - Forma de onda de tensão da simulação do circuito RL no software PS Simul	.53
Figura 63- Forma de onda de corrente da simulação do circuito RL no software ATP	.54
Figura 64 - Forma de onda de corrente da simulação do circuito RL no software PS Simul	.54
Figura 65- Forma de onda de tensão da simulação do circuito RC no software ATP.	.55
Figura 66 - Forma de onda de tensão da simulação do circuito RC no software PS Simul	.55
Figura 67- Forma de onda de corrente da simulação do circuito RC no software ATP.	.56
Figura 68 - Forma de onda de corrente da simulação do circuito RC no software PS Simul	.56
Figura 69- Forma de onda de tensão da simulação do circuito LC no software ATP	.57
Figura 70 - Forma de onda de tensão da simulação do circuito LC no software PS Simul	.57
Figura 71- Forma de onda de corrente da simulação do circuito LC no software ATP	.58
Figura 72 - Forma de onda de corrente da simulação do circuito LC no software PS Simul	58
Figura 73- Forma de onda de tensão da simulação do circuito RL no software ATP.	. 59
Figura 74 - Forma de onda de tensão da simulação do circuito RL no software PS Simul.	. 59
Figura 75- Forma de onda de corrente da simulação do circuito RL no software ATP	60
Figura 76 - Forma de onda de corrente da simulação do circuito RL no software PS Simul	60
Figura 77- Forma de onda de tensão da simulação do circuito RC no software ATP.	.61
Figura 78 - Forma de onda de tensão da simulação do circuito RC no software PS Simul	.61
Figura 79- Forma de onda de corrente da simulação do circuito RC no software ATP.	62
Figura 80 - Forma de onda de corrente da simulação do circuito RC no software PS Simul	62
Figura 81- Forma de onda de tensão da simulação do circuito RLC no software ATP	.63
Figura 82 - Forma de onda de tensão da simulação do circuito RLC no software PS Simul	.63
Figura 83- Forma de onda de corrente da simulação do circuito RLC no software ATP.	64
Figura 84 - Forma de onda de corrente da simulação do circuito RLC no software PS Simul	64
Figura 85- Forma de onda das tensões da simulação do circuito RL no software ATP.	65
Figura 86 - Forma de onda das tensões da simulação do circuito RL no software PS Simul	.65
Figura 87- Forma de onda das correntes da simulação do circuito RL no software ATP	.66
Figura 88 - Forma de onda das correntes da simulação do circuito RL no software PS Simul	.66
Figura 89- Forma de onda das tensões da simulação do circuito RC no software ATP.	.67
Figura 90 - Forma de onda das tensões da simulação do circuito RC no software PS Simul	.67
Figura 91- Forma de onda das correntes da simulação do circuito RC no software ATP.	.68
Figura 92 - Forma de onda das correntes da simulação do circuito RC no software PS Simul	.68
Figura 93- Forma de onda das tensões da simulação do circuito LC no software ATP.	.69
Figura 94 - Forma de onda das tensões da simulação do circuito LC no software PS Simul	.69
Figura 95- Forma de onda das correntes da simulação do circuito LC no software ATP.	.70
Figura 96 - Forma de onda das correntes da simulação do circuito LC no software PS Simul	.70
Figura 97- Forma de onda das tensões da simulação do circuito RLC no software ATP	.71
Figura 98 - Forma de onda das tensões da simulação do circuito RLC no software PS Simul	.71
Figura 99- Forma de onda das correntes da simulação do circuito RLC no software ATP	.72
Figura 100 - Forma de onda das correntes da simulação do circuito RLC no software PS Simul	.72
Figura 101 - Circuitos RL alimentados por fonte DC modelados em ambos os softwares	.73
Figura 102 - Circuitos RC alimentados por fonte DC modelados em ambos os softwares	.73
Figura 103 - Circuitos LC alimentados por fonte DC modelados em ambos os softwares	.73
Figura 104 - Circuitos RL alimentados por fonte DC modelados em ambos os softwares	.73
Figura 105 - Circuitos RC alimentados por fonte DC modelados em ambos os softwares	.74
Figura 106 - Circuitos RLC alimentados por fonte DC modelados em ambos os softwares	.74
Figura 107 - Circuitos RL alimentados por fonte AC modelados em ambos os softwares	.74
Figura 108 - Circuitos RC alimentados por fonte AC modelados em ambos os softwares	.74
Figura 109 - Circuitos LC alimentados por fonte AC modelados em ambos os softwares	.75
Figura 110 - Circuitos RL alimentados por fonte AC modelados em ambos os softwares	.75
Figura 111 - Circuitos RC alimentados por fonte AC modelados em ambos os softwares	.75
Figura 112 - Circuitos RLC alimentados por fonte AC modelados em ambos os softwares	.75
Figura 113 - Circuitos RL trifásicos modelados em ambos os softwares.	.76
Figura 114 - Circuitos RC trifásicos modelados em ambos os softwares.	.76
Figura 115 - Circuitos LC trifásicos modelados em ambos os softwares	.76

Figura 116 - Circuitos RLC trifásicos modelados em ambos os softwares	.76
Figura 117- Forma de onda de corrente do circuito modelado no software ATP	.77
Figura 118 - Forma de onda de corrente do circuito modelado no software PS Simul.	.78
Figura 119 – Curva levantada da simulação no software ATP (V x I).	.78
Figura 120 – Curva levantada da simulação no software PS Simul (V x I).	.78
Figura 121- Forma de onda de corrente do circuito modelado no software ATP.	.79
Figura 122 - Forma de onda de corrente do circuito modelado no software PS Simul.	.79
Figura 123 – Curva levantada da simulação no software ATP (V x I).	.80
Figura 124 – Curva levantada da simulação no software PS Simul (V x I).	.80
Figura 125- Forma de onda de corrente do circuito modelado no software ATP	.81
Figura 126 - Forma de onda de corrente do circuito modelado no software PS Simul.	.81
Figura 127- Forma de onda de corrente do circuito modelado no software ATP	.82
Figura 128 - Forma de onda de corrente do circuito modelado no software PS Simul	.82
Figura 129- Forma de onda de corrente do circuito modelado no software ATP	.83
Figura 130 - Forma de onda de corrente do circuito modelado no software PS Simul.	.83
Figura 131 – Curva levantada da simulação no software ATP (I x Fluxo)	.84
Figura 132 – Curva levantada da simulação no software PS Simul (I x Fluxo).	.84
Figura 133- Forma de onda de corrente do circuito modelado no software ATP	.85
Figura 134 - Forma de onda de corrente do circuito modelado no software PS Simul	.85
Figura 135 – Curva levantada da simulação no software ATP (I x Fluxo)	.86
Figura 136 – Curva levantada da simulação no software PS Simul (I x Fluxo).	.86
Figura 137- Forma de onda de corrente do circuito modelado no software ATP	.87
Figura 138 - Forma de onda de corrente do circuito modelado no software PS Simul.	.87
Figura 139 – Curva levantada da simulação no software ATP (I x Fluxo)	.88
Figura 140 – Curva levantada da simulação no software PS Simul (1 x Fluxo).	.88
Figura 141- Forma de onda de corrente do circuito modelado no software ATP	.89
Figura 142 - Forma de onda de corrente do circuito modelado no software PS Simul.	.89
Figura 143 – Curva levantada da simulação no software ATP (V x I)	.90
Figura 144 – Curva levantada da simulação no software PS Simul (V x I).	.90
Figura 145 – Circuitos modelados em ambos os softwares.	.91
Figura 146 – Circuitos modelados em ambos os softwares.	.91
Figura 147 – Circuitos modelados em ambos os softwares.	.91
Figura 148 – Circuitos modelados em ambos os softwares.	.91
Figura 149 – Circuitos modelados em ambos os softwares.	.91
Figura 150 – Circuitos modelados em ambos os softwares.	.92
Figura 151 – Circuitos modelados em ambos os softwares.	.92
Figura 152 – Circuitos modelados em ambos os softwares.	.92
Figura 153 – Circuitos modelados em ambos os softwares.	.92
Figura 154 – Forma de onda obtida da corrente do primario do transformador no ATP	.93
Figura 155 – Forma de onda obtida da corrente do primario do transformador no PS Simul.	.93
Figura 156 – Forma de onda obtida da corrente do secundario do transformador no ATP.	.94
Figura 157 – Forma de onda obtida da corrente do secundario do transformador no PS Simul	.94
Figura 158 – Forma de onda obtida da corrente do primario do transformador no ATP	.95
Figura 159 – Forma de onda obtida da corrente do primario do transformador no PS Simul.	.95
Figura 160 – Forma de onda obtida da corrente do secundario do transformador no ATP.	.96
Figura 161 – Forma de onda obtida da corrente do secundario do transformador no PS Simul	.96
Figura 162 – Forma de onda obtida das correntes do primario do transformador no ATP.	.97
Figura 163 – Forma de onda obtida das correntes do primario do transformador no PS Simul.	.97
Figura 164 – Forma de onda obtida das correntes do secundario do transformador no ATP	.98
Figura 165 – Forma de onda obtida das correntes do secundario do transformador no PS Simul	.98
Figura 166 – Forma de onda oblida das correntes do primario do transformador no ATP.	.99
Figura 167 – Forma de onda obtida das correntes do primario do transformador no PS Simul.	.99
Figura 100 – Forma de onde obtida das correntes do secundario do transformador no ATP	100
Figura 109 – Forma de onda obtida das correntes do secundario do transformador no PS Simul	100
Figura 170 – Forma de onda obtida das correntes do primario do autotransformador no ATP	101
Figura 1/1 – Forma de onda obtida das correntes do primario do autotransformador no PS Simul I	101
rigura $1/2$ – Forma de onda obtida das correntes do secundario do autotransformador no ATP	102
Figura 175 – Forma de onda obtida das correntes do secundario do autotransformador no PS Simul I	102
Figura 1/4 – Forma de onda obtida das correntes do primario do transformador no ATP.	104
Figura 1/5 – Forma de onda obtida das correntes do primário do transformador no PS Simul I	104

Figura 176 – Forma de onda obtida das correntes do secundário do transformador no ATP.	104
Figura 177 - Forma de onda obtida das correntes do secundário do transformador no PS Simul	104
Figura 178 – Forma de onda obtida das correntes do terciário do transformador no ATP	105
Figura 179 – Forma de onda obtida das correntes do terciário do transformador no PS Simul	105
Figura 180 – Forma de onda obtida das correntes do primário do transformador no ATP.	107
Figura 181 – Forma de onda obtida das correntes do primário do transformador no PS Simul	107
Figura 182 – Forma de onda obtida das correntes do secundário do transformador no ATP	107
Figura 183 – Forma de onda obtida das correntes do secundário do transformador no PS Simul	107
Figura 184 – Forma de onda obtida das correntes do terciário do transformador no ATP	108
Figura 185 – Forma de onda obtida das correntes do terciário do transformador no PS Simul	108
Figura 186 – Forma de onda obtida das correntes do primário do transformador no ATP.	110
Figura 187 – Forma de onda obtida das correntes do primário do transformador no PS Simul	110
Figura 188 – Forma de onda obtida das correntes do secundário do transformador no ATP.	110
Figura 189 – Forma de onda obtida das correntes do secundário do transformador no PS Simul	110
Figura 190 - Circuitos modelados em ambos os softwares.	111
Figura 191 – Circuitos modelados em ambos os softwares.	111
Figura 192 – Circuitos modelados em ambos os softwares.	111
Figura 193 – Circuitos modelados em ambos os softwares.	111
Figura 194 – Circuitos modelados em ambos os softwares.	112
Figura 195 – Circuitos modelados em ambos os softwares.	112
Figura 196 – Circuitos modelados em ambos os softwares.	112
Figura 197 – Circuitos modelados em ambos os softwares.	113
Figura 198 – Tensões em ambos os terminais (ATP) para energização em t = 0 s	115
Figura 199 – Tensões em ambos os terminais (PS SIMUL) para energização em t = 0 s	115
Figura 200 – Tensões em ambos os terminais (ATP) para energização em t = $4,166$ ms	115
Figura 201 – Tensões em ambos os terminais (PS SIMUL) para energização em t = 4,166 ms	115
Figura 202 – Tensões na fase A de ambos os terminais (ATP).	116
Figura 203 – Tensões na fase A de ambos os terminais (PS SIMUL)	116
Figura 204 – Tensões na fase B de ambos os terminais (ATP).	117
Figura 205 – Tensões na fase B de ambos os terminais (PS SIMUL).	117
Figura 206 – Tensões na fase C de ambos os terminais (ATP).	117
Figura 207 – Tensões na fase C de ambos os terminais (PS SIMUL).	117
Figura 208 – Tensões em ambos os terminais (ATP) para energização em t = 0 s	118
Figura 209 – Tensões em ambos os terminais (PS SIMUL) para energização em t = 0 s	118
Figura 210 – Tensões em ambos os terminais (ATP) para energização em t = $4,166$ ms	119
Figura 211 – Tensões em ambos os terminais (PS SIMUL) para energização em t = 4,166 ms	119
Figura 212 – Tensões na fase A de ambos os terminais (ATP).	120
Figura 213 – Tensões na fase A de ambos os terminais (PS SIMUL).	120
Figura 214 – Tensões na fase B de ambos os terminais (ATP).	121
Figura 215 – Tensões na fase B de ambos os terminais (PS SIMUL).	121
Figura 216 – Tensões na fase C de ambos os terminais (ATP).	121
Figura 217 – Tensões na fase C de ambos os terminais (PS SIMUL).	121
Figura 218 – Tensões na fase A de ambos os terminais (ATP).	123
Figura 219 – Tensões na fase A de ambos os terminais (PS SIMUL)	123
Figura 220 – Tensões na fase B de ambos os terminais (ATP).	123
Figura 221 – Tensões na fase B de ambos os terminais (PS SIMUL).	123
Figura 222 – Tensões na fase C de ambos os terminais (ATP).	124
Figura 223 – Tensões na fase C de ambos os terminais (PS SIMUL).	124
Figura 224 – Correntes que fluem pelas fases da linha (ATP).	124
Figura 225 – Correntes que fluem pelas fases da linha (PS SIMUL).	124
Figura 226 – Tensões na fase A de ambos os terminais (ATP).	126
Figura 227 – Tensões na fase A de ambos os terminais (PS SIMUL)	126
Figura 228 – Tensões na fase B de ambos os terminais (ATP).	126
Figura 229 - Tensões na fase B de ambos os terminais (PS SIMUL)	126
Figura 230 – Tensões na fase C de ambos os terminais (ATP).	127
Figura 231 – Tensões na fase C de ambos os terminais (PS SIMUL).	127
Figura 232 - Correntes que fluem pelas fases da linha (ATP).	127
Figura 233 – Correntes que fluem pelas fases da linha (PS SIMUL).	127
Figura 234 – Tensões na fase A de ambos os terminais dos cabos (ATP)	130
Figura 235 – Tensões na fase A de ambos os terminais dos cabos (PS SIMUL)	130

Figura 236 - Zoom Tensões na fase A de ambos os terminais dos cabos (ATP e PS SIMUL)	130
Figura 237 – Tensões na fase B de ambos os terminais dos cabos (ATP)	131
Figura 238 – Tensões na fase B de ambos os terminais dos cabos (PS SIMUL)	131
Figura 239 - Zoom Tensões na fase B de ambos os terminais dos cabos (ATP e PS SIMUL)	131
Figura 240 – Tensões na fase C de ambos os terminais dos cabos (ATP)	132
Figura 241 – Tensões na fase C de ambos os terminais dos cabos (PS SIMUL)	132
Figura 242 - Zoom Tensões na fase C de ambos os terminais dos cabos (ATP e PS SIMUL)	132
Figura 243 - Circuitos modelados em ambos os softwares.	133
Figura 244 - Circuitos modelados em ambos os softwares.	133
Figura 245 - Circuitos modelados em ambos os softwares.	133
Figura 246 – Circuitos modelados em ambos os softwares.	133
Figura 247 - Circuitos modelados em ambos os softwares.	134
Figura 248 - Circuitos modelados em ambos os softwares.	134
Figura 249 - Circuitos modelados em ambos os softwares.	134
Figura 250 – Forma de onda das correntes que alimentam o motor no software ATP	136
Figura 251 – Forma de onda das correntes que alimentam o motor no software PS Simul.	136
Figura 252 – Zoom da forma de onda das correntes que alimentam o motor no momento da partida no	
software ATP	136
Figura 253 – Zoom da forma de onda das correntes que alimentam o motor no momento da partida no	
software PS Simul	136
Figura 254 – Forma de onda da velocidade do motor no software ATP	137
Figura 255 – Forma de onda da velocidade do motor no software PS Simul	137
Figura 256 – Forma de onda das correntes fornecidas ao sistema no software ATP	130
Figura 257 – Forma de onda das correntes fornecidas ao sistema no software PS Simul	130
Figura 258 Zoom da forma de onda das correntes fornecidas ao sistema no momento da partida do	159
motor no software ATP	130
Figure 250 Zoom de forme de onde des correntes formecidas se sisteme no momento de partide de	159
rigura 257 – Zooni da forma de onda das correntes fornecidas ao sistema no momento da partida do	120
Figure 260 Forme do ondo dos correntos que seem do gerador no software ATP	139
Figura 200 – Forma de onda das correntes que saem do gerador no software RTF	141
Figura 201 – Forma de onda das correntes que saem do berramento infinite no software ATD	141
Figura 262 – Forma de onda das correntes que saem do barramento infinito no software ATP.	141
Figura 263 – Forma de onda das correntes que saem do barramento infinito no software PS Simul	141
Figura 264 – Forma de onda das correntes que entram na carga no software ATP	142
Figura 265 – Forma de onda das correntes que entram na carga no software PS Simul.	142
Figura $266 -$ Forma de onda das correntes do motor para a simulação 01 no software ATP	144
Figura 267 – Forma de onda das correntes do motor para a simulação 01 no software PS Simul	144
Figura $268 -$ Forma de onda das correntes do motor para a simulação 02 no software ATP	144
Figura 269 – Forma de onda das correntes do motor para a simulação 02 no software PS Simul	144
Figura 270 – Zoom da forma de onda das correntes do motor após retirada do primeiro estágio resistivo	0
do rotor no software ATP.	145
Figura 271 – Zoom da forma de onda das correntes do motor após retirada do primeiro estágio resistivo	0
do rotor no software PS Simul	145
Figura 272 – Zoom da forma de onda das correntes do motor após retirada do segundo estágio resistivo)
do rotor no software ATP.	145
Figura 273 - Zoom da forma de onda das correntes do motor após retirada do segundo estágio resistivo)
do rotor no software PS Simul	145
Figura 274 - Forma de onda da velocidade do motor para a simulação 01 no software ATP	146
Figura 275 - Forma de onda da velocidade do motor para a simulação 01 no software PS Simul	146
Figura 276 - Forma de onda da velocidade do motor para a simulação 02 no software ATP	146
Figura 277 - Forma de onda da velocidade do motor para a simulação 02 no software PS Simul	146
Figura 278 – Forma de onda da corrente de partida no software ATP.	148
Figura 279 – Forma de onda da corrente de partida no software PS Simul	148
Figura 280 - Forma de onda da velocidade da máquina no software ATP.	148
Figura 281 – Forma de onda da velocidade da máquina no software PS Simul	148
Figura 282 – Forma de onda das tensões nos terminais do gerador no software ATP.	150
Figura 283 – Forma de onda das tensões nos terminais do gerador no software PS Simul.	150
Figura 284 – Forma de onda das correntes de falta no software ATP.	150
Figura 285 – Forma de onda das correntes de falta no software PS SIMUL	150
Figura 286 – Forma de onda das correntes de carga no software ATP.	151
Figura 287 – Forma de onda das correntes de carga no software PS SIMUL	151

Figura 288 – Forma de onda das correntes de saída do gerador síncrono no software ATP.	151
Figura 289 – Forma de onda das correntes de saída do gerador síncrono no software PS Simul	151
Figura 290 – Forma de onda das tensões nos terminais da máquina síncrona (valores instantâneos e R	MS)
no software ATP	153
Figura 291 – Forma de onda das tensões nos terminais da máquina síncrona (valores instantâneos e R	MS)
no software PS Simul.	153
Figura 292 – Zoom da forma de onda das tensões nos terminais da máquina síncrona (valores	
instantâneos e RMS) no instante da inserção de carga, obtido no software ATP	153
Figura 293 – Zoom da forma de onda das tensões nos terminais da máquina síncrona (valores	
instantâneos e RMS) no instante da inserção de carga, obtido no software PS Simul	153
Figura 294 – Forma de onda das correntes de saída da máquina síncrona no software ATP	154
Figura 295 – Forma de onda das correntes de saída da máquina síncrona no software PS Simul	154
Figura 296 - Zoom da forma de onda das correntes de saída da máquina síncrona no instante da inser	ção
de carga, obtido no software ATP.	154
Figura 297 - Zoom da forma de onda das correntes de saída da máquina síncrona no instante da inser	ção
de carga, obtido no software PS Simul.	154
Figura 298 – Sistema modelado para o cenário 01 em ambos os softwares.	155
Figura 299 – Sistema modelado para o cenário 02 em ambos os softwares.	155
Figura 300 - Sistema modelado para o cenário 03 em ambos os softwares.	155
Figura 301 – Sistema modelado para a simulação 01 do cenário 04 em ambos os softwares	156
Figura 302 - Sistema modelado para a simulação 02 do cenário 04 em ambos os softwares	156
Figura 303 – Sistema modelado para o cenário 05 em ambos os softwares.	156
Figura 304 – Sistema modelado para a simulação do cenário 06 em ambos os softwares.	157
Figura 305 – Sistema modelado para a simulação do cenário 07 em ambos os softwares.	157
Figura 306 – Medição de frequência obtida no software ATP.	163
Figura 307 – Medição de frequência obtida no software PS SIMUL.	163
Figura 308 – Medição de tensão obtida no software ATP	163
Figura 309 – Medição de tensão obtida no software PS SIMUL.	163
Figura 310 – Medição da potência que flui para todas as cargas, obtida no software ATP	164
Figura 311 – Medição da potência que flui para todas as cargas, obtida no software PS SIMUL	164
i Bara 511 - Modição da potencia que nai para todas as cargas, obtida no software i o binitez.	
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft	ware
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP.	ware 164
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft	ware 164 tware
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL.	ware 164 tware 164
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. 	
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. 	
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. 	
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda obtida no software PS Simul. 	
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. 	
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. 	ware 164 tware 164 165 166 166 168 168 169
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. 	ware 164 tware 165 166 166 168 168 169 169
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda da stensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. 	ware 164 164 165 166 166 168 168 169 169 169
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 320 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 321 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no PS SIMUL 	ware 164 164 165 166 166 168 168 169 169 169 L.
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no PS SIMUL 	ware 164 tware 165 166 166 168 169 169 169 L. 169
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. 	ware 164 ware 164 165 166 166 168 169 169 L. 169 L. 169 170
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. 	ware 164 ware 164 165 166 166 168 169 169 L. 169 L. 169 170 L.
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. 	ware 164 tware 164 165 166 166 168 169 169 169 L. 169 169 L. 170 L. 170
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP	ware 164 tware 164 165 166 166 168 169 169 169 169 169 169 L. 170 L. 170 172
 Figura 312 – Medições das potências que nar para todas as cargas, ortica no sortiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 319 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 320 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 325 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 5 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 5 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 5 A RMS, obtida no ATP. Figura 326 – Forma de onda da tensõe em pu no barramento principal, obtida no ATP. 	ware 164 tware 164 165 166 166 168 169 169 169 169 169 169 170 L. 170 172 172
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 325 – Forma de onda da tensão em pu no barramento principal, obtida no ATP. Figura 326 – Forma de onda da tensão em pu no barramento principal, obtida no ATP. Figura 327 – TRIP da função 27, obtido no ATP. 	ware 164 tware 165 166 166 168 169 169 169 169 169 169 170 L. 170 172 172 173
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 325 – Forma de onda da tensão em pu no barramento principal, obtida no ATP. Figura 326 – Forma de onda da tensão em pu no barramento principal, obtida no ATP. Figura 327 – TRIP da função 27, obtido no ATP. Figura 328 – TRIP da função 27, obtido no PS SIMUL. 	ware 164 tware 164 165 166 166 168 169 169 169 169 169 169 170 L. 170 L. 172 173 173
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 321 – Forma de onda da tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 325 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda da tensão em pu no barramento principal, obtida no ATP. Figura 327 – TRIP da função 27, obtido no ATP. Figura 328 – TRIP da função 27, obtido no PS SIMUL. Figura 329 – Sistema modelado para o cenário 01 em ambos os softwares.	ware 164 tware 164 165 166 166 168 169 169 169 169 169 169 170 L. 170 L. 170 173 173 174
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 320 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 321 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no PS SIMUL Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 325 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUL Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUL Figura 326 – Forma de onda da tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda da tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 326 – Forma de onda da tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 327 – TRIP da função 27, obtido no ATP. Figura 328 – TRIP da função 27, obtido no ATP. Figura 329 – Sistema modelado para o cenário 01 em ambos os softwares. Figura 330 – Sistema modelado para o cenário 02 em ambos os softwares.	ware 164 ware 164 165 166 166 168 169 169 169 169 169 169 169 170 L. 170 172 173 173 174 174
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP	ware 164 ware 164 165 166 166 168 169 169 169 169 169 169 169 169 169 170 L. 170 172 172 173 174 174 174
Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda do acorrente RMS na carga obtida no PS SIMUL. Figura 320 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 321 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 325 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUL Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMU Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMU Figura 326 – Forma de onda da tensões me pu no barramento principal, obtida no ATP. Figura 327 – TRIP da função 27, obtido no PS SIMUL. Figura 328 – TRIP da função 27, obtido no PS SIMUL. Figura 329 – Sistema modelado para o cenário 01 em ambos os softwares. Figura 330 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 331 – Sistema modelado para o cenário 03 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 04 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 04 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 04 em ambos os softwares.	ware 164 ware 164 165 166 166 168 169 169 169 169 169 169 169 169 169 169 169 170 L. 170 172 172 173 174 174 175
Figura 312 – Medições das potências da carga induiva (vermelho) e capacitiva (verde) obtida no soft ATP Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares Figura 315 – Forma de onda obtida no software ATP Figura 316 – Forma de onda obtida no software PS Simul Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP Figura 318 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 320 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 321 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP Figura 325 – Forma de onda da tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUL Figura 326 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMU Figura 327 – TRIP da função 27, obtido no ATP Figura 328 – TRIP da função 27, obtido no ATP Figura 330 – Sistema modelado para o cenário 01 em ambos os softwares Figura 331 – Sistema modelado para o cenário 02 em ambos os softwares Figura 331 – Sistema modelado para o cenário 04 em ambos os softwares Figura 332 – Sistema modelado para o cenário 04 em ambos os softwares Figura 331 – Sistema modelado para o cenário 04 em ambos os softwares Figura 333 – Circuito modelado no software ATP	ware 164 ware 164 165 166 166 168 169 169 169 169 169 169 169 169 169 169 169 170 L. 170 172 172 173 174 174 175 176
Figura 312 – Medições das potências da carga induitva (vermelho) e capacitiva (verde) obtida no soft ATP	ware 164 tware 164 165 166 166 168 169 169 169 169 169 169 169 169 170 170 172 172 173 174 174 174 174 176 176 176
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 319 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda da corrente RMS na carga obtida no AS SIMUL. Figura 321 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP. Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMU Figura 325 – Forma de onda da tensão em pu no barramento principal, obtida no ATP. Figura 326 – Forma de onda da tensão em pu no barramento principal, obtida no ATP. Figura 327 – TRIP da função 27, obtido no ATP. Figura 330 – Sistema modelado para o cenário 01 em ambos os softwares. Figura 331 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 03 em ambos os softwares. Figura 333 – Circuito modelado para o cenário 04 em ambos	ware 164 tware 164 165 166 166 168 169 169 169 169 169 169 170 L. 170 L. 170 172 173 173 174 174 175 176 176 177
 Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft ATP. Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no soft PS SIMUL. Figura 314 – Malha do sistema a ser modelado para o cenário 02 em ambos os softwares. Figura 315 – Forma de onda obtida no software ATP. Figura 316 – Forma de onda obtida no software PS Simul. Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP. Figura 318 – Forma de onda do ângulo de saída do controlador obtida no PS SIMUL. Figura 319 – Forma de onda da corrente RMS na carga obtida no ATP. Figura 320 – Forma de onda da corrente RMS na carga obtida no PS SIMUL. Figura 321 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP. Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUU Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUU Figura 325 – Forma de onda da tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUU Figura 326 – Forma de onda da tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUU Figura 327 – TRIP da função 27, obtido no ATP. Figura 328 – Forma de onda da tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUL Figura 329 – Sistema modelado para o cenário 01 em ambos os softwares. Figura 330 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 331 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 02 em ambos os softwares. Figura 331 – Sistema modelado para o cenário 03 em ambos os softwares. Figura 332 – Sistema modelado para o cenário 04 em ambos os softwares. Figura 334 – Circuito modelado no software ATP. Figura 335 – Geometria	ware 164 tware 164 165 166 166 168 169 169 169 169 169 169 170 L. 170 L. 170 172 173 174 174 175 176 177 177

Figura 558 – Forma de onda das correntes na chave CH1 oblidas no PS Simul.	.1/8
Figura 339 - Forma de onda das correntes na chave CH2 obtidas no ATP.	.178
Figura 340 - Forma de onda das correntes na chave CH2 obtidas no PS Simul.	.178
Figura 341 - Forma de onda das tensões no primário do transformador obtidas no ATP	.179
Figura 342 - Forma de onda das tensões no primário do transformador obtidas no PS Simul	.179
Figura 343 – Zoom da forma de onda das tensões no primário do transformador no ATP.	.179
Figura 344 – Zoom da forma de onda das tensões no primário do transformador no PS Simul	.179
Figura 345 – Forma de onda das tensões no secundário do transformador obtidas no ATP	180
Figura 346 – Forma de onda das tensões no secundário do transformador obtidas no PS Simul	180
Figura 347 – Zoom da forma de onda das tensões no secundário do transformador no ATP	180
Figura 348 Zoom da forma de onda das tensões no secundário do transformador no PS Simul	180
Figura 340 – Zooni da forma de onda das tensões no nonto da ratirada da falta obtidas no ATP	100
Figura 349 – Forma de onda das tensões no ponto da retirada da falta obtidas no RTT	101
Figura 550 – Forma de onda das tensões no ponto da retirada da faita obtidas no FS Simur.	101
Figura $551 - Zoom da forma de onda das tensões no ponto da retirada da faita no ATP$.181
Figura 352 – Zoom da forma de onda das tensões no ponto da retirada da falta no PS Simul.	.181
Figura 353 – Análise da envoltória TRT no ATP.	. 182
Figura 354 – Análise da envoltória TRT no PS Simul.	182
Figura 355 – Zoom da Análise da envoltória TRT no ATP.	.182
Figura 356 – Zoom da Análise da envoltória TRT no PS Simul.	.182
Figura 357 - Circuito modelado no software ATP	.183
Figura 358 - Circuito modelado no software PS Simul.	. 183
Figura 359 - Forma de onda das tensões nos terminais do banco da subestação no ATP	.184
Figura 360 - Forma de onda das tensões nos terminais do banco da subestação no PS Simul	.184
Figura 361 – Forma de onda das tensões nos terminais do banco do consumidor no ATP.	.184
Figura 362 – Forma de onda das tensões nos terminais do banco do consumidor no PS Simul.	.184
Figura 363 – Forma de onda das tensões nos terminais do banco da subestação no ATP	185
Figura 364 – Forma de onda das tensões nos terminais do banco da subestação no PS Simul	185
Figura 365 – Forma de onda das tensões nos terminais do banco da subestação no 15 Sintal.	185
Figura 366 Forma de onda das tensões nos terminais do banco do consumidor no PS Simul	185
Figure 367 Circuite medalede no software ATD	196
Figure 367 – Circuito modelado no software ATF	100
Figura 308 – Circuito modelado no software PS Simui.	.100
$\Gamma'_{1} = 2(0 - C_{1} + C_{1}$	107
Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP.	.187
Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul	187
Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP	187 187 188
Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul	187 187 188 188
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. 	187 187 188 188 188
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. 	187 187 188 188 188 188
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. 	187 187 188 188 188 188 188
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no PS Simul. 	187 187 188 188 188 188 188 189 189
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. 	187 187 188 188 188 188 188 189 189 189
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. 	187 187 188 188 188 188 188 189 189 189 189
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. 	187 187 188 188 188 188 188 189 189 189 189 189
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. 	187 187 188 188 188 188 188 189 189 189 189 189 191
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. 	187 187 188 188 188 188 188 189 189 189 189 189 191 191
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. 	187 187 188 188 188 188 189 189 189 189 189 189 191 191
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 382 – Circuito modelado no software ATP. 	187 187 188 188 188 188 188 189 189 189 189 191 191 191 191
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no PS Simul. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 383 – Circuito modelado no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. 	187 187 188 188 188 188 188 189 189 189 189 189 191 191 191 191 192 192
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no PS Simul. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 383 – Circuito modelado no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software PS Simul. 	187 187 188 188 188 188 189 189 189 189 189 191 191 191 191 192 192 193 193
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no PS Simul. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 382 – Circuito modelado no software ATP. Figura 383 – Circuito modelado no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 385 – Forma de onda das correntes no primário do transformador no software PS Simul. 	187 187 188 188 188 188 189 189 189 189 189 191 191 191 191 192 192 193 193
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 383 – Circuito modelado no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. 	187 187 188 188 188 188 189 189 189 189 189 191 191 191 191 192 193 193 195
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software PS S	187 187 188 188 188 188 188 189 189 189 189 191 191 191 192 193 193 195 195
Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no PS Simul. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 382 – Circuito modelado no software ATP. Figura 383 – Circuito modelado no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software ATP. Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 388 – Zoom da forma d	187 187 188 188 188 188 188 189 189 189 189 189 191 191 191 192 193 193 195 195
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 375 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do	187 187 188 188 188 188 188 189 189 189 189 189 191 191 191 192 193 193 195 195 195
Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no PS Simul. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 382 – Circuito modelado no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das correntes no primário do transformador no software ATP. Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 386 – Forma de onda das tensões no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software ATP. Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 389 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura	187 187 188 188 188 188 188 189 189 189 189 191 191 191 192 193 193 195 195 I.
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 382 – Circuito modelado no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software ATP. Figura 388 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software ATP. Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 389 – Zoom da forma de onda das tensões no pri	187 187 188 188 188 188 188 189 189 189 189 191 191 191 192 193 195 195 195 195
Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes na primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 383 – Circuito modelado no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Circuito modelado no software PS Simul. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software ATP. Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software PS Simul. Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 389 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 389 – Zoom da forma de onda das tensões no primário do transformador no sof	187 187 187 188 188 188 188 189 189 189 189 189 191 191 191 192 193 195 195 195 195 196 196
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Coom da forma de onda das correntes na carga resistiva no ATP. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 382 – Circuito modelado no software PS Simul. Figura 383 – Circuito modelado no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 386 – Forma de onda das tensões no primário do transformador no software ATP. Fig	187 187 187 188 188 188 188 189 189 189 189 189 191 191 191 192 193 195 195 195 195 195 196 197
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 382 – Circuito modelado no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software ATP. Figura 386 – Forma de onda das correntes no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software ATP. Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 389 – Zoom da forma de onda das tensões no primário do transfo	187 187 187 188 188 188 188 189 189 189 189 189 191 191 191 192 193 195 195 195 195 195 196 197 197
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 372 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no ATP. Figura 375 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 379 – Circuito modelado em anbos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 382 – Circuito modelado no software ATP. Figura 383 – Circuito modelado no software PS Simul. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 386 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 386 – Forma de onda das tensões no primário do transformador no software ATP. Figura 386 – Forma de onda das tensões no primário do transformador no software PS Simul. Figura 387 – Forma de onda das tensões no primário do transformador no software PS Simul. Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 389 – Zoom da forma de onda das tensões no primário do transformador no software PS Simul. Figura 389 – Zo	187 187 187 188 188 188 188 189 189 189 189 189 191 191 191 191 193 193 195 195 195 195 195 196 197 197
 Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP. Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul. Figura 371 – Forma de onda das tensões na fase A de todos os trechos no ATP. Figura 373 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 375 – Forma de onda das tensões na fase A de todos os trechos no PS Simul. Figura 376 – Forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 377 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no PS Simul. Figura 378 – Zoom da forma de onda das correntes na carga resistiva no ATP. Figura 379 – Circuito modelado em ambos os softwares. Figura 380 – Forma de onda das correntes no primário do transformador no software ATP. Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul. Figura 382 – Circuito modelado no software ATP. Figura 383 – Circuito modelado no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das correntes no primário do transformador no software ATP. Figura 384 – Forma de onda das correntes no primário do transformador no software ATP. Figura 385 – Forma de onda das tensões no primário do transformador no software ATP. Figura 386 – Forma de onda das tensões no primário do transformador no software ATP. Figura 387 – Forma de onda das tensões no primário do transformador no software ATP. Figura 389 – Zoom da forma de onda das tensões no primário do transformador no software ATP. Figura 389 – Zoom	187 187 187 188 188 188 188 189 189 189 189 189 191 191 191 191 192 193 193 195 195 195 195 195 196 197 197 197 198

Figura 397 -	- Formas de onda das tensões do terminal aberto no software PS Simul	198
Figura 398 –	- Circuito modelado no software ATP	199
Figura 399 –	- Circuito modelado no software PS Simul.	199
Figura 400 –	- Figura que ilustra o local de aplicação da contingência no cenário atual	201
Figura 401 –	- Formas de onda das tensões do barramento B4 no software ATP.	201
Figura 402 –	- Formas de onda das tensões do barramento B4 no software PS Simul.	201
Figura 403 –	- Zoom das formas de onda das tensões do barramento B4 no software ATP	202
Figura 404 –	- Zoom das formas de onda das tensões do barramento B4 no software PS Simul	202
Figura 405 –	- Formas de onda das tensões do barramento B5 no software ATP.	202
Figura 406 –	- Formas de onda das tensões do barramento B5 no software PS Simul.	202
Figura 407 –	- Zoom das formas de onda das tensões do barramento B5 no software ATP	203
Figura 408 –	- Zoom das formas de onda das tensões do barramento B5 no software PS Simul	203
Figura 409 –	- Formas de onda das tensões do barramento B6 no software ATP.	203
Figura 410 –	- Formas de onda das tensões do barramento B6 no software PS Simul	203
Figura 411 –	- Zoom das formas de onda das tensões do barramento B6 no software ATP	204
Figura 412 –	- Zoom das formas de onda das tensões do barramento B6 no software PS Simul	204
Figura 413 –	- Formas de onda das tensões do barramento B8 no software ATP.	204
Figura 414 –	- Formas de onda das tensões do barramento B8 no software PS Simul	204
Figura 415 –	- Zoom das formas de onda das tensões do barramento B8 no software ATP	205
Figura 416 –	- Zoom das formas de onda das tensões do barramento B8 no software PS Simul	205
Figura 417 –	- Forma de onda da corrente de falta na fase A no software ATP.	205
Figura 418 –	- Forma de onda da corrente de falta na fase A no software PS Simul	205
Figura 419 –	- Zoom da forma de onda da corrente de falta na fase A no software ATP	206
Figura 420 –	- Zoom da forma de onda da corrente de falta na fase A no software PS Simul	206
Figura 421 –	- Figura que ilustra o local de aplicação da contingência no cenário atual	207
Figura 422 –	- Formas de onda das tensões do barramento B4 no software ATP.	207
Figura 423 –	- Formas de onda das tensões do barramento B4 no software PS Simul.	207
Figura 424 –	- Zoom das formas de onda das tensões do barramento B4 no software ATP	208
Figura 425 –	- Zoom das formas de onda das tensões do barramento B4 no software PS Simul	208
Figura 426 –	- Formas de onda das tensões do barramento B5 no software ATP.	208
Figura 427 –	- Formas de onda das tensões do barramento B5 no software PS Simul.	208
Figura 428 –	- Zoom das formas de onda das tensões do barramento B5 no software ATP	209
Figura 429 –	- Zoom das formas de onda das tensões do barramento B5 no software PS Simul	209
Figura 430 –	- Formas de onda das tensões do barramento B6 no software ATP.	209
Figura 431 –	- Formas de onda das tensões do barramento B6 no software PS Simul.	209
Figura 432 –	- Zoom das formas de onda das tensões do barramento B6 no software ATP	210
Figura 433 –	- Zoom das formas de onda das tensões do barramento B6 no software PS Simul	210
Figura 434 –	- Formas de onda das tensões do barramento B8 no software ATP.	210
Figura 435 –	- Formas de onda das tensões do barramento B8 no software PS Simul.	210
Figura 436 –	- Zoom das formas de onda das tensões do barramento B8 no software ATP	211
Figura 437 –	- Zoom das formas de onda das tensões do barramento B8 no software PS Simul	211
Figura 438 –	- Figura que ilustra o local de aplicação da contingência no cenário atual	212
Figura 439 –	- Formas de onda das tensões do barramento B4 no software ATP.	212
Figura 440 –	- Formas de onda das tensões do barramento B4 no software PS Simul.	212
Figura 441 –	- Zoom das formas de onda das tensões do barramento B4 no software ATP	213
Figura 442 –	- Zoom das formas de onda das tensões do barramento B4 no software PS Simul	213
Figura 443 –	- Formas de onda das tensões do barramento B5 no software ATP.	213
Figura 444 –	- Formas de onda das tensões do barramento B5 no software PS Simul.	213
Figura 445 –	- Zoom das formas de onda das tensões do barramento B5 no software ATP	214
Figura 446 –	- Zoom das formas de onda das tensões do barramento B5 no software PS Simul	214
Figura 447 –	- Formas de onda das tensões do barramento B6 no software ATP.	214
Figura 448 –	- Formas de onda das tensões do barramento B6 no software PS Simul.	214
Figura 449 –	- Zoom das formas de onda das tensões do barramento B6 no software ATP	215
Figura 450 –	- Zoom das formas de onda das tensões do barramento B6 no software PS Simul	215
Figura 451 –	- Formas de onda das tensões do barramento B8 no software ATP.	215
Figura 452 –	- Formas de onda das tensões do barramento B8 no software PS Simul.	215
Figura 453 –	- Zoom das formas de onda das tensões do barramento B8 no software ATP	216
Figura 454 –	- Zoom das formas de onda das tensões do barramento B8 no software PS Simul	216
Figura 455 –	- Figura que ilustra o local de aplicação da contingência no cenário atual	217
Figura 456 –	- Formas de onda das tensões do barramento B4 no software ATP.	217

Figura 457 - Formas de onda das tensões do barramento B4 no software PS Simul.	217
Figura 458 - Zoom das formas de onda das tensões do barramento B4 no software ATP	218
Figura 459 - Zoom das formas de onda das tensões do barramento B4 no software PS Simul	218
Figura 460 - Formas de onda das tensões do barramento B5 no software ATP.	218
Figura 461 - Formas de onda das tensões do barramento B5 no software PS Simul	218
Figura 462 - Zoom das formas de onda das tensões do barramento B5 no software ATP	219
Figura 463 - Zoom das formas de onda das tensões do barramento B5 no software PS Simul	219
Figura 464 - Formas de onda das tensões do barramento B6 no software ATP.	219
Figura 465 - Formas de onda das tensões do barramento B6 no software PS Simul	219
Figura 466 - Zoom das formas de onda das tensões do barramento B6 no software ATP	220
Figura 467 - Zoom das formas de onda das tensões do barramento B6 no software PS Simul	220
Figura 468 - Formas de onda das tensões do barramento B8 no software ATP.	220
Figura 469 - Formas de onda das tensões do barramento B8 no software PS Simul	220
Figura 470 - Zoom das formas de onda das tensões do barramento B8 no software ATP	221
Figura 471 - Zoom das formas de onda das tensões do barramento B8 no software PS Simul	221
Figura 472 - Formas de onda das correntes de falta no software ATP.	221
Figura 473 - Formas de onda das correntes de falta no software PS Simul.	221
Figura 474 - Zoom das formas de onda das correntes de falta no software ATP	222
Figura 475 – Zoom das formas de onda das correntes de falta no software PS Simul	222

Índice de Tabelas

Tabela 1- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul	23
Tabela 2- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul	24
Tabela 3- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul	25
Tabela 4- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul	26
Tabela 5- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul	27
Tabela 6- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul	28
Tabela 7- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.	29
Tabela 8- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.	30
Tabela 9- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.	31
Tabela 10- Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.	32
Tabela 11- Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.	33
Tabela 12- Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.	34
Tabela 13– Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.	35
Tabela 14– Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.	36
Tabela 15– Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.	37
Tabela 16– Componente e parametrização para estudo estatístico no software ATP	38
Tabela 17– Componentes e parametrização para estudo estatístico no software PS SIMUL	
Tabela 18 - Parametrizações dos elementos passivos no ATP e PS Simul	
Tabela 19 - Parametrizações dos elementos passivos no ATP e PS Simul	
Tabela 20 - Parametrizações dos elementos passivos no ATP e PS Simul	
Tabela 21 - Parametrizações dos elementos passivos no ATP e PS Simul	47
Tabela 22 - Parametrizações dos elementos passivos no ATP e PS Simul	49
Tabela 23 - Parametrizações dos elementos passivos no ATP e PS Simul	51
Tabela 24 - Parametrizações dos elementos passivos no ATP e PS Simul	53
Tabela 25 - Parametrizações dos elementos passivos no ATP e PS Simul	55
Tabela 26 - Parametrizações dos elementos passivos no ATP e PS Simul	57
Tabela 27 - Parametrizações dos elementos passivos no ATP e PS Simul	59
Tabela 28 - Parametrizações dos elementos passivos no ATP e PS Simul	61
Tabela 29 - Parametrizações dos elementos passivos no ATP e PS Simul	
Tabela 30 - Parametrizações dos elementos passivos no ATP e PS Simul	
Tabela 31 - Parametrizações dos elementos passivos no ATP e PS Simul	
Tabela 32 - Parametrizações dos elementos passivos no ATP e PS Simul	
Tabela 33 - Parametrizações dos elementos passivos no ATP e PS Simul	71
Tabela 34 - Parametrizações dos elementos não lineares no ATP e PS Simul.	77
Tabela 35 – Curva cadastrada na resistência não linear tipo 99 (Pseudo-Linear).	77
Tabela 36 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simi	ıl. 79
Tabela 37 – Curva cadastrada na resistência não linear tipo 92 (Thevenin)	
Tabela 38 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simi	al. 81
Tabela 39 – Curva cadastrada na resistência não linear tipo 97 (Pseudo-Linear).	81
Tabela 40 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simu	al. 82
Tabela 41 – Curva cadastrada na resistência não linear tipo 91 (Thevenin)	82
Tabela 42 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simu	al. 83
Tabela 43 – Curva cadastrada na indutância não linear tipo 98 (Pseudo-Linear)	83
Tabela 44 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simu	al. 85
Tabela 45 – Curva cadastrada na indutância não linear tipo 93 (Thevenin).	85
Tabela 46 - Parametrizações dos elementos não lineares no ATP e PS Simul.	87
Tabela 47 – Curva cadastrada na indutância não linear tipo 96 (Pseudo-Linear)	87
Tabela 48 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simu	ıl. 89
Tabela 49 - Parametrizações dos elementos não lineares no ATP e PS Simul.	90
Tabela 50 – Curva cadastrada no para-raio.	90
Tabela 51 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul	93
Tabela 52 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.	95
Tabela 53 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.	97
Tabela 54 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul	99
Tabela 55 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul	101
Tabela 56 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul	103

Tabela 57 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul	106
Tabela 58 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul	109
Tabela 59 – Curva cadastrada no para-raio.	109
Tabela 60 - Parametrizações utilizadas nas linhas do ATP e PS Simul	114
Tabela 61 - Parametrizações utilizadas nas linhas do ATP e PS Simul	116
Tabela 62 - Parametrizações utilizadas nas linhas do ATP e PS Simul	118
Tabela 63 - Parametrizações utilizadas nas linhas do ATP e PS Simul	120
Tabela 64 - Parametrizações utilizadas no software ATP.	122
Tabela 65 - Parametrizações utilizadas no software PS Simul.	122
Tabela 66 - Parametrizações utilizadas no software ATP.	125
Tabela 67 - Parametrizações utilizadas no software PS Simul.	125
Tabela 68 - Parametrizações utilizadas no software ATP.	128
Tabela 69 - Parametrizações utilizadas no software PS Simul.	129
Tabela 70 - Parametrizações utilizadas para as máquinas do ATP e PS Simul	135
Tabela 71 - Parametrizações utilizadas para as máquinas do ATP e PS Simul	138
Tabela 72 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.	140
Tabela 73 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.	143
Tabela 74 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.	147
Tabela 75 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.	149
Tabela 76 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.	152
Tabela 77 – Equivalência dos blocos de controle da biblioteca do ATP Draw com os componentes do	o PS
Simul.	158
Tabela 78 – Dados do sistema confeccionado em ambos os softwares.	162
Tabela 79 – Dados do sistema confeccionado em ambos os softwares.	165
Tabela 80 – Dados do sistema de controle confeccionado em ambos os softwares.	167
Tabela 81 – Dados do sistema de controle confeccionado em ambos os softwares.	171
Tabela 82 – Dados utilizados na parametrização das linhas do sistema de transmissão	200

1 Capítulo 01 – Introdução

Este trabalho tem o propósito de demonstrar uma análise de equivalência realizada entre os softwares ATP (*Alternative Transients Program*) e PS Simul (*Power System Simulator*).

O ATP, escrito na linguagem de programação FORTRAN, foi concebido em 1984 por iniciativa dos Doutores W. Scott Meyer e Tsu- Huei Liu, e desde então tem sido desenvolvido por meio das contribuições de grupos de usuários oficiais localizados em diversos países do mundo. Esse software consiste em uma versão para microcomputadores adaptada de um dos primeiros programas para simulação computacional de transitórios eletromagnéticos, o EMTP (*Eletromagnetic Transients Program*), desenvolvido por Herman W. Dommel na década de 60.

O programa PS SIMUL, por sua vez, vem sendo desenvolvido no Brasil desde o ano de 2009 pela empresa CONPROVE Indústria e Comércio LTDA e teve sua primeira versão lançada no ano de 2014, sendo disponibilizada, desde o seu lançamento, uma versão FREE do *software* no site da empresa. Esse programa, criado com a finalidade principal de permitir ao usuário modelar sistemas de potência e de controle complexos e simular transitórios eletromagnéticos e eletromecânicos, trabalha com uma interface bastante intuitiva e amigável, com uma série de recursos que facilitam a obtenção e avaliação de resultados, visualização de erros e entrada de dados em geral.

É fato que o software ATP, há muitos anos, vem sendo mundialmente empregado no meio acadêmico e profissional para realização de estudos envolvendo a análise de transitórios eletromagnéticos, eletromecânicos e sistemas de controle. Tal fato o torna um dos softwares mais confiáveis e reconhecidos da atualidade.

Neste contexto, a empresa CONPROVE optou por confeccionar este documento, onde serão realizadas simulações de inúmeros cenários nos softwares ATP e PS Simul, envolvendo os principais componentes disponibilizados pelo software ATP e seus equivalentes no software PS Simul. Serão vislumbrados desde cenários extremamente simples com avaliação de comportamentos individuais de modelos, até cenários mais complexos envolvendo as possibilidades de realização de estudos de transitórios eletromagnéticos, estabilidade transitória, sobretensão, descargas atmosféricas, modelagem de máquinas elétricas, partida de motores, curto-circuito, entre outras aplicações.

É válido ressaltar que este documento pretende, única e exclusivamente, comprovar a equivalência da solução empregada por ambos os softwares, limitando-se ao contexto de recursos e modelos disponibilizados pelo ATP. Dessa forma, não serão abrangidos os recursos e componentes exclusivos do software PS Simul, dos quais se destacam:

- Utilização de método híbrido de solução das equações diferenciais (Trapezoidal + Interpolação + Euler) que evita a ocorrência de oscilações numéricas durante a simulação;
- Possibilidade de reprodução de distúrbios reais no software com a importação de arquivos no formato COMTRADE ou CSV;
- Geração automática de relatórios completos das simulações;
- Definição, pelo usuário, de rotinas automatizadas de testes com a declaração de parâmetros como constantes e a posterior realização de avaliações automáticas dos resultados obtidos, por amplitude ou tempo;
- Possibilidade de conexão direta com as malas de testes da empresa CONPROVE

para a geração das formas de onda obtidas na simulação sem a necessidade de exportação para formato COMTRADE;

- Módulo para realização de análises estatísticas dos resultados permitindo a confecção de gráficos lineares, de barras e pizza.
- Método Iterativo que, juntamente com a mala de testes, permite a realização de testes em malha fechada com a realimentação de sinais binários;
- Biblioteca que atualmente conta com mais de 400 blocos divididos pelos grupos: Elementos Passivos, Elementos Não Lineares, Fontes, Chaves/Faltas, Acoplamentos, Transformadores, Linhas/Cabos, Máquinas, Reguladores e Turbinas, Entradas/Saídas (conexão com hardware externo), Controles, Lógicas, Medição, Proteção, Eletrônica de Potência, Link com Runtime, Runtime e Outros.
- Equipe especializada de suporte técnico para atender à necessidade de usuários frente a dúvidas ou sugestões relacionadas ao software;
- Disponibilização de mais de 100 exemplos prontos de estudos envolvendo: Qualidade de Energia, Transformadores, Proteção, Motores, Máquinas Síncronas, Máquinas DC, Máquinas Assíncronas, Manobras em Sistemas Elétricos, Energias Renováveis, Eletrônica/HVDC/FACTS, Linhas de Transmissão, Compensação de Sistemas Elétricos, entre outros.
- Manual completo ressaltando a teoria e características de todos os componentes da biblioteca e demais recursos do software.
- Software em constante atualização de recursos e componentes;
- Disponível nos idiomas Português, Inglês e Espanhol.

A priori será abordado cada um dos grupos de componentes de maneira individual, ressaltando as equivalências de parametrização entre os softwares e também ilustrando as formas de onda obtidas com a simulação de cada cenário. Posteriormente, será realizada a modelagem e simulação de sistemas mais completos envolvendo estudos típicos de transitórios eletromagnéticos e eletromecânicos. Por fim, será feita uma breve discussão dos resultados obtidos no que diz respeito à equivalência de ambos os softwares abordados.

2 Capítulo 02 – Fontes.

Este capítulo abrange as principais fontes disponibilizadas pelo software ATP e suas equivalentes no software PS Simul. Para simulação das fontes de descargas atmosféricas foi utilizado passo de tempo de 0,001 us e para as demais simulação foi utilizado passo de tempo de 10 us.

2.1 Cenário 01 - Fonte DC (DC Type 11)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
U	-		N° Fases $\rightarrow 1$
┉┥┥┠	Amp → 100 V		Módulo RMS → 100 V
DC Type 11	-	Fonte DC	Frequência → 0 Hz

Tabela 1- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 1- Resultado Fonte DC no software ATP.

Figura 2 - Resultado Fonte DC no software PS Simul.

2.2 Cenário 02 – Fonte Rampa (Ramp Type 12)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
U	-		№ Rampas → 1
uk⊖–	Amp → 100 V	⊩ ∩_•	Ponto 1 > Valor \rightarrow 100 V
	$T_o \rightarrow 0.01 \text{ s}$	Ponto 1 > Tempo \rightarrow 0,01 s	
Ramp Type 12	-	Fnt Rampa	Estabilizar \rightarrow Sim

Tabela 2- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 3 - Resultado Fonte Rampa Tipo 12 no software ATP.

Figura 4 - Resultado Fonte Rampa Tipo 12 no software PS Simul.

2.3 Cenário 03 - Fonte Rampa (Slope Ramp Type 13)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
	-	¶ <mark>−−⊙−</mark> Fnt Rampa	N° Rampas $\rightarrow 2$
	Amp→ 100 V		Ponto 1 > Valor \rightarrow 100 V
uk∩−	T0 \rightarrow 0,01 s		Ponto 1 > Tempo \rightarrow 0,01 s
Slope-Ramp Type 13	A1 → 200 V		Ponto 2 > Valor \rightarrow 200 V
	T1 → 0,03 s		Ponto 2 > Tempo \rightarrow 0,03 s
	-		Estabilizar \rightarrow Sim

Tabela 3- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 5- Resultado Fonte Rampa Tipo 13 no software ATP.

Figura 6- Resultado Fonte Rampa Tipo 13 no software PS Simul.

2.4 Cenário 04 - Fonte AC monofásica (AC Type 14)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
	-		N° Fases $\rightarrow 1$
U	-	⊢⊘ ⊸	Tipo Geração → Cosseno
1HAD-	$Amp \rightarrow 100 V$		Módulo RMS → 70,71 V
' 🕓	$f \rightarrow 60 \text{ Hz}$		Frequência → 60 Hz
AC Type 14	Pha $\rightarrow 0^{\circ}$	Fnt Sen/Cos 1Φ	Ângulo \rightarrow 0 °
	A1 \rightarrow 0 V		Offset $\rightarrow 0 V$

Tabela 4- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 7- Resultado Fonte Senoidal monofásica no software ATP.

Figura 8- Resultado Fonte Senoidal monofásica no software PS Simul.

2.5 Cenário 05 - Fonte AC trifásica (AC 3-ph Type 14)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
	-	<u></u>	N° Fases $\rightarrow 3$
U	-		Tipo Geração → Cosseno
₩ 2 =	Amp → 200 V		Módulo RMS → 141,42 V
	f → 60 Hz		Frequência → 60 Hz
AC 3-ph Type 14	Pha \rightarrow 0 °		Ângulo → 0 °
	A1 \rightarrow 0 V	Fnt Sen/Cos 3Φ	Offset $\rightarrow 0 V$

Tabela 5- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 9- Resultado Fonte Senoidal trifásica no software ATP.

Figura 10- Resultado Fonte Senoidal trifásica no software PS Simul.

2.6 Cenário 06 - Fonte Surto Dupla Exponencial (Surge Type 15)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
U	Amp → 20344 A		Amplitude → 20344 A
4-€∕-•	A → -14203,84	(<u>t</u>)	A → 14203,84
Surge Type 15	B → -4883365,54	Fnt Exp Normal	B → 4883365,54

Tabela 6- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 11- Resultado Fonte Surto Dupla Exponencial Tipo 15 no software ATP.

Figura 12- Resultado Fonte Surto Dupla Exponencial no software PS Simul.

2.7 Cenário 07 - Fonte Surto Heidler (Heidler Type 15)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
U	Amp → 20000 A	_	Amplitude → 20000 A
4 € }_•	T_f → 1,2E-6 s	(<u>↓</u>)	tfrente → 1,2E-6 s
. 🕠	Tau → 6,9539E-5 s		tau → 6,9539E-5 s
Heidler Type 15	$N \rightarrow 2$	Fnt Exp Heidler	$n \rightarrow 2$

Tabela 7- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 13- Resultado Fonte Surto Heidler Tipo 15 no software ATP.

Figura 14- Resultado Fonte Surto Heidler Tipo 15 no software PS Simul.

2.8 Cenário 08 – Fonte Surto Standler (Standler Type 15)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
U	Amp → 20000 A		Amplitude \rightarrow 20000 A
+{∕}-•	Tau → 6,9539E-5 s		tau → 6,9539E-5 s
Standler Type 15	$N \rightarrow 0,1$	Fnt Exp Standler	$n \rightarrow 0,1$

Tabela 8- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 15- Resultado Fonte Surto Standler Tipo 15 no software ATP.

Figura 16- Resultado Fonte Surto Standler Tipo 15 no software PS Simul.

2.9 Cenário 09 – Fonte Surto CIGRÉ (CIGRÉ Type 15)

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
U	Amp → 20000 A	-	Amplitude → 20000 A
•H∕ ∖ -•	T_f → 1.2E-6 s		Tf → 1.2E-6 s
	T_h → 50E-6 s		Th → 50E-6 s
Cigré Type 15	$S_max \rightarrow 26E9 A/s$	Fnt Exp Cigré	Sm → 26E9 A/s

Tabela 9- Parametrizações utilizadas para comparações das fontes no ATP e PS Simul.

Figura 17- Resultado Fonte Surto CIGRÉ Tipo 15 no software ATP.

Figura 18- Resultado Fonte Surto CIGRÉ Tipo 15 no software PS Simul.

3 Capítulo 03 – Chaves

Este capítulo abrange os principais elementos para simulações de chaveamentos disponibilizados pelo software ATP e seus equivalentes no software PS Simul.

3.1 Cenário 01 - Chave monofásica controlada por tempo

Tabela 10- Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.

АТР		PS Simul	
Componente	Parametrização	Componente	Parametrização
	-		N° Fases $\rightarrow 1$
	-		Controle Fechamento \rightarrow Tempo
<u>_×_</u>	$\blacksquare \checkmark \blacksquare \qquad Imar \rightarrow 0 A \qquad \blacksquare \checkmark \blacksquare \blacksquare$	Corrente Máxima p/ Abrir → 0 A	
Switch time controlled	-	Chv Tempo 1Φ	Estado inicial \rightarrow Aberta
	$T-cl \rightarrow 0,01 s$		Tempo Chv 001 → 0,01 s
	T-op → 0,03 s		Tempo Chv 002 → 0,03 s

Para tal validação foi utilizado um circuito com uma fonte cossenoidal com valor de pico de 10 V e frequência de 60 Hz. Tal fonte foi conectada a uma chave que interliga uma carga resistiva de 1 ohm. Foi medida então a tensão na resistência. O passo de tempo adotado para a simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (3.8.1).

Figura 19- Resultado da simulação com a chave monofásica no software ATP.

Figura 20 - Resultado da simulação com a chave monofásica no software PS Simul.

3.2 Cenário 02 - Chave trifásica controlada por tempo

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
	-		N° Fases $\rightarrow 3$
Switch time 3-ph	-		Controle Fechamento → Tempo (Interno)
	Imar $\rightarrow 0$ A	A ο A B C C C C C C C C C C C C	Corrente Máx. Abrir → 0 A
	-		Fase A-B-C > Est. inicial \rightarrow Aberta
	$T-cl_1 \rightarrow 0,01 s$		Fase A > Tempo Chv $001 \rightarrow 0,01$ s
	$T-cl_2 \rightarrow 0,02 s$		Fase B > Tempo Chv $001 \rightarrow 0,02$ s
	T-cl_3 \rightarrow 0,03 s		Fase C > Tempo Chv $001 \rightarrow 0.03$ s
	T-op_1 → 0,03 s		Fase A > Tempo Chv $002 \rightarrow 0.03$ s
	T-op_2 \rightarrow 0,04 s		Fase B > Tempo Chv $002 \rightarrow 0.04$ s
	T-op_3 → 0,05 s		Fase C > Tempo Chv $002 \rightarrow 0,05$ s

Tabela 11- Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.

Para tal validação foi utilizado um circuito com uma fonte cossenoidal com valor de pico de 10 V (F-N) e frequência de 60 Hz. Tal fonte foi conectada a uma chave que interliga uma carga trifásica resistiva com valor de 1 ohm por fase. Foi medida então a tensão na resistência. O passo de tempo adotado para a simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (3.8.2).

Figura 21- Resultado da simulação com a chave trifásica no software ATP.

Figura 22 - Resultado da simulação com a chave trifásica no software PS Simul.

3.3 Cenário 03 - Chave monofásica controlada por tensão

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
	V-fl → 5 V	- 10+	Tensão Mín. Fechar → 5 V
• · · · · ·	Imar $\rightarrow 0$ A		Corrente Máx. Abrir → 0 A
• •	$T-cl \rightarrow 0,01 s$	Chv Tempo Controlada	Tempo de Fch \rightarrow 0,01 s
Switch voltage contr.	T-de → 0,0001 s	por Tensão	Tempo Mínimo de Fch → 0,0001 s

Tabela 12- Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.

Para tal validação foi utilizado um circuito com uma fonte cossenoidal com valor de pico de 10 V e frequência de 60 Hz. Tal fonte foi conectada a uma chave que interliga uma carga resistiva com valor de 1 ohm. Foi medida então a tensão na resistência. Com as parametrizações realizadas, espera-se que haja o fechamento da chave no instante t = 10 ms e, posteriormente, a cada novo semi-ciclo a chave aguarde a tensão de 5 V para fechar. O passo de tempo adotado para a simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (3.8.3).

Figura 23- Resultado da simulação com a chave controlada por tensão no software ATP.

Figura 24 - Resultado da simulação com a chave controlada por tensão no software PS Simul.

3.4 Cenário 04 - Diodo

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
N	Vig $\rightarrow 0$ V	. N	Tens. Mín. Fechar → 0 V
•-{}-•	Ihold $\rightarrow 0$ A		Corr. Máx. Abrir → 0 A
Diode (Type 11)	CLOSED $\rightarrow 1$	Diodo	Estado inicial \rightarrow Fechada

Tabela 13- Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.

Para tal validação foi utilizado um circuito com uma fonte cossenoidal com valor de pico de 10 V e frequência de 60 Hz. Tal fonte foi conectada a uma chave que interliga uma carga resistiva com valor de 1 ohm. Foi medida então a tensão na resistência. Neste caso, espera-se que haja condução apenas nos semi-ciclos positivos. O passo de tempo adotado para a simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (3.8.4).

Figura 25- Resultado da simulação com o diodo no software ATP.

Figura 26 - Resultado da simulação com o diodo no software PS Simul.

3.5 Cenário 05 - Tiristor

ATP		PS Simul	
Componente	Parametrização	Componente	Parametrização
Ť	$Vig \rightarrow 0 V$	N.	Tensão Mín. Fechar → 0 V
•-[>-•	Ihold $\rightarrow 0$ A		Corrente Máx. Abrir → 0 A
Valve (Type 11)	CLOSED $\rightarrow 0$	Tiristor	Estado inicial → Aberta

Tabela 14– Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.

Para tal validação foi utilizado um circuito com uma fonte senoidal com valor de pico de 10 V e frequência de 60 Hz. Tal fonte foi conectada a uma chave que interliga uma carga resistiva com valor de 1 ohm. Para a geração dos pulsos para o tiristor, foi utilizada uma fonte de pulsos com frequência de 60 Hz e com comprimento do pulso de 0,005 segundos, sendo o instante de início da geração dos pulsos em 1/8 de ciclo (reproduz um ângulo de ativação de 45° aos tiristores). Foi medida então a tensão na resistência. O passo de tempo adotado para a simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (3.8.5).

Figura 27- Resultado da simulação com o tiristor no software ATP.

Figura 28 - Resultado da simulação com o tiristor no software PS Simul.
3.6 Cenário 06 - Triac

Α	ТР	PS Simul		
Componente	Parametrização	Componente	Parametrização	
Ts INI	$Vig \rightarrow 0 V$	7	Tensão Mín. Fechar → 0 V	
∙₩	$\blacksquare Ihold \rightarrow 0 A$		Corrente Máx. Abrir → 0 A	
Triac (Type 12)	<i>Triac (Type 12)</i> CLOSED $\rightarrow 0$		Estado inicial \rightarrow Aberta	

Tabela 15– Parametrizações utilizadas para comparações das chaves no ATP e PS Simul.

Para tal validação foi utilizado um circuito com uma fonte senoidal com valor de pico de 10 V e frequência de 60 Hz. Tal fonte foi conectada a uma chave que interliga uma carga resistiva com valor de 1 ohm. Para a geração dos pulsos para o tiristor, foi utilizada uma fonte de pulsos com frequência de 120 Hz e com comprimento do pulso de 0,005 segundos, sendo o instante de início da geração dos pulsos em 1/8 de ciclo (reproduz um ângulo de ativação de 45° ao TRIAC). Esta fonte foi conectada à entrada SPARK e na entrada CLAMP foi mantido nível baixo para que o controle do TRIAC seja realizado exclusivamente pela entrada SPARK. O passo de tempo adotado para a simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (3.8.6).

Figura 29- Resultado da simulação com o TRIAC no software ATP.

Figura 30 - Resultado da simulação com o TRIAC no software PS Simul.

3.7 Cenário 07 – Chave Estatística

Para viabilizar a realização de estudos estatísticos o software ATP disponibiliza a chave estatística em sua biblioteca. Estes mesmos estudos são também viabilizados pelo software PS Simul com utilização do componente de geração de números randômicos.

Para fins de exemplificação, suponha que o usuário queira estudar o fechamento de uma chave em seu sistema respeitando a distribuição gaussiana, com tempo médio de fechamento no instante t = 0,1 s e desvio padrão de 30 ms. No software ATP o usuário deverá inserir o componente denominado chave estatística e parametrizá-lo da forma a seguir:

Componentes	Parametrização
	Statistic switch Switch type: Independent T 0.1 Open/Close Opening Closing
	Dev. 0.03 Distribution C Uniform C Gaussian

Tabela 16- Componente e parametrização para estudo estatístico no software ATP.

No software PS Simul o usuário deverá parametrizar o componente de geração de número randômico com a curva definida, sendo a saída deste componente o tempo em que a chave deverá ser fechada. Com isso, deve-se realizar a comparação (componente "Comparador") desta saída com o tempo da simulação (componente "Tempo"), visando enviar um sinal de fechamento para a chave do sistema. A forma de parametrização e modelagem destes componentes segue:

Tabela 17- Componentes e parametrização para estudo estatístico no software PS SIMUL.

Componentes	Parametrização			
	•	! 2↓ 2 ↑ 🖓	ati v da v	
		Geral		
		Descrição	Número Rand.	
<u> </u>		Distribuição	Gaussiana	
ф он	- Valores			
		Máximo Valor	26,666667 m	
		Mínimo Valor	10,000000 m	
Comparador		Muda Saída	Simulação	
•		∆ sinal	100,000000 m	
		Média	100,000000 m	
		Desvio padrão	30,000000 m	
		Descendência	Automática	
		Descend. Inicial	1,000000	

3.8 Circuitos modelados para as validações realizadas

3.8.1 Cenário 01 - Chaves monofásicas controladas por tempo (3.1).

Figura 31 - Circuitos modelados para validação das chaves monofásicas controladas por tempo.

3.8.2 Cenário 02 - Chaves trifásicas controladas por tempo (3.2).

Figura 32 - Circuitos modelados para validação das chaves trifásicas controladas por tempo.

3.8.3 Cenário 03 - Chaves monofásicas controladas por tensão (3.3).

ATP

PS Simul

Figura 33 - Circuitos modelados para validação da chave controlada por tensão.

3.8.4 Cenário 04 - Diodos (3.4).

Figura 34 - Circuitos modelados para validação do diodo.

3.8.5 Cenário 05 - Tiristores (3.5).

Figura 35 – Circuitos modelados para validação do tiristor.

3.8.6 Cenário 06 - TRIAC (3.6).

4 Capítulo 04 - Elementos Passivos

Este capítulo abrange os principais elementos passivos disponibilizados pelo software ATP e seus equivalentes no software PS Simul. A fim de validá-los, foram modelados diversos cenários onde tais elementos são dispostos em várias configurações e energizados tanto com alimentação AC quanto DC.

4.1 Cenário 01 - Energização de circuito RL com fonte DC no instante t = 0s.

~	A	АТР	PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
01	•-////-• Resistor	RES $\rightarrow 10 \Omega$	- [▲] MM- R	Resistência $\rightarrow 10 \Omega$	
01	•-3333-•	L → 100 mH		Indutância→100e-3 H	
	Inductor	$Kp \rightarrow 0 pu$	L	-	

Tabala 1	Q	Doromotrizoc	ñas das	alamantas	nacciwoo	no ATE	DODES	imul
I abela I	0 -	Farametrizaç	jues dos	elementos	passivos	IIO AI F	erss	mun.

Para tal validação foi utilizada uma fonte DC com amplitude de 100V, uma resistência de 10 ohms e uma indutância de 100 mH. Foram medidas as variáveis de tensão e corrente na indutância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.1).

Figura 37- Forma de onda de tensão da simulação do circuito RL no software ATP.

Figura 38 - Forma de onda de tensão da simulação do circuito RL no software PS Simul.

Figura 40 - Forma de onda de corrente da simulação do circuito RL no software PS Simul.

4.2 Cenário 02 - Energização de circuito RC com fonte DC no instante t = 0s.

~	ATP		PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
02	•••///•• Resistor	RES $\rightarrow 10 \Omega$	- ` R	Resistência → 10 Ω	
02	•	$C \rightarrow 1000 \text{ uF}$	•	Capacitância→1e-3 F	
	Capacitor	Ks \rightarrow 0 pu	C	-	

Tabela 19 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte DC com amplitude de 100V, uma resistência de 10 ohms e uma capacitância de 1000 uF. Foram medidas as variáveis de tensão e corrente na capacitância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.2).

Figura 41- Forma de onda de tensão da simulação do circuito RC no software ATP.

Figura 42 - Forma de onda de tensão da simulação do circuito RC no software PS Simul.

Figura 43- Forma de onda de corrente da simulação do circuito RC no software ATP.

Figura 44 - Forma de onda de corrente da simulação do circuito RC no software PS Simul.

4.3 Cenário 03 - Energização de circuito LC com fonte DC no instante t = 0s.

~	ATP		PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
	•-77770-•	L → 0,5 mH		Indutância→0,5e-3 H	
03	Inductor	Kp → 0 pu	L	-	
05	•	C → 25 uF	<u>*</u>	Capacitância→25e-6 F	
	Capacitor	Ks → 0 pu	C	-	

Tabela 20 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte DC com amplitude de 100V, uma indutância de 0,5 mH e uma capacitância de 25 uF. Foram medidas as variáveis de tensão e corrente na indutância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.3).

Figura 45- Forma de onda de tensão da simulação do circuito LC no software ATP.

Figura 46 - Forma de onda de tensão da simulação do circuito LC no software PS Simul.

Figura 47- Forma de onda de corrente da simulação do circuito LC no software ATP.

Figura 48 - Forma de onda de corrente da simulação do circuito LC no software PS Simul.

4.4 Cenário 04 - Energização de circuito RL com fonte DC no instante t = 0s, com condições iniciais de corrente na indutância.

~	ATP		PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
	•••///•• Resistor	RES $\rightarrow 10 \Omega$	- ↓ //↓ R	Resistência $\rightarrow 10 \Omega$	
04	→I(0)	L → 100 mH		Indutância→100e-3 H	
	•-0000-•	-		Hab. Inicial. → Sim	
	L:I(0)	$I(0) \rightarrow 5 A$	L	Corrente Inic. \rightarrow 5 A	

Tabela 21 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte DC com amplitude de 100V, uma resistência de 10 ohms e uma indutância de 100 mH, sendo sua corrente inicial de 5 A. Foram medidas as variáveis de tensão e corrente na indutância. O passo utilizado nas simulações foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.4).

Figura 50 - Forma de onda de tensão da simulação do circuito RL no software PS Simul.

Figura 52 - Forma de onda de corrente da simulação do circuito RL no software PS Simul.

4.5 Cenário 05 - Energização de circuito RC com fonte DC no instante t = 0s, com condições iniciais de tensão na capacitância.

	ATP		PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
	•\//\-• Resistor	RES $\rightarrow 10 \Omega$	- ^ ///- R	Resistência → 10 Ω	
05	Ujoj	C → 1000 uF		Capacitância → 1e-3 F	
	╺─╢─╺	-	<u>•</u>	Hab. Inicial. \rightarrow Sim	
	C: V(0)	$V(0)+ \rightarrow 50 V$ $V(0)- \rightarrow 0 V$	С	Tensão Inic. → 50 V	

Tabela 22 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte DC com amplitude de 100V, uma resistência de 10 ohms e uma capacitância de 1000 uF, sendo sua tensão inicial de 50 V. Foram medidas as variáveis de tensão e corrente na capacitância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.5).

Figura 53- Forma de onda de tensão da simulação do circuito RC no software ATP.

Figura 54 - Forma de onda de tensão da simulação do circuito RC no software PS Simul.

Figura 55- Forma de onda de corrente da simulação do circuito RC no software ATP.

Figura 56 - Forma de onda de corrente da simulação do circuito RC no software PS Simul.

4.6 Cenário 06 - Energização de circuito RLC com fonte DC no instante t = 0s.

~	ATP		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
	•\/\/-• Resistor	RES \rightarrow 0,01 Ω	- ↓ //↓ R	Resistência → 0,01 Ω
06	•3333v-•	L → 0,5 mH	÷~~-	Indutância → 0,5e-3 H
00	Inductor	Kp → 0 pu	L	-
	•	$C \rightarrow 25 \text{ uF}$	<u>*</u>	Capacitância→25e-6 F
	Capacitor	Ks → 0 pu	C	-

Tabela 23 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte DC com amplitude de 100V, uma resistência de 0,01 ohms, uma indutância de 0,5 mH e uma capacitância de 25 uF. Foram medidas as variáveis de tensão e corrente na indutância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.6).

Figura 57- Forma de onda de tensão da simulação do circuito RLC no software ATP.

Figura 59- Forma de onda de corrente da simulação do circuito RLC no software ATP.

Figura 60 - Forma de onda de corrente da simulação do circuito RLC no software PS Simul.

4.7 Cenário 07 - Energização de circuito RL com fonte AC no instante t = 0s.

	ATP		PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
	•••///•• Resistor	RES $\rightarrow 10 \Omega$	- ^ ₩ R	Resistência $\rightarrow 10 \Omega$	
07	•mm⊸	L → 100 mH	÷	Indutância→100e-3 H	
	Inductor	Kp → 0 pu	L	-	

Tabela 24 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), uma resistência de 10 ohms e uma indutância de 100 mH. Foram medidas as variáveis de tensão e corrente na indutância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.7).

Figura 61- Forma de onda de tensão da simulação do circuito RL no software ATP.

Figura 62 - Forma de onda de tensão da simulação do circuito RL no software PS Simul.

Figura 63- Forma de onda de corrente da simulação do circuito RL no software ATP.

Figura 64 - Forma de onda de corrente da simulação do circuito RL no software PS Simul.

4.8 Cenário 08 - Energização de circuito RC com fonte AC no instante t = 0s.

~	ATP		PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
08	•••///•• Resistor	RES $\rightarrow 10 \Omega$	- ^	Resistência → 10 Ω	
08	⊷⊣⊢∙	C → 1000 uF	·	Capacitância → 1e-3 F	
	Capacitor	Ks → 0 pu	C	-	

Tabela 25 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), uma resistência de 10 ohms e uma capacitância de 1000 uF. Foram medidas as variáveis de tensão e corrente na capacitância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.8).

Figura 65- Forma de onda de tensão da simulação do circuito RC no software ATP.

Figura 66 - Forma de onda de tensão da simulação do circuito RC no software PS Simul.

Figura 67- Forma de onda de corrente da simulação do circuito RC no software ATP.

Figura 68 - Forma de onda de corrente da simulação do circuito RC no software PS Simul.

4.9 Cenário 09 - Energização de circuito LC com fonte AC no instante t = 0s.

~	АТР		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
	•-77770-•	L → 0,5 mH	<u></u>	Indutância → 0,5e-3 H
00	Inductor	Kp → 0 pu	L	-
09	⊷⊣⊢∙	C → 25 uF	·	Capacitância→25e-6 F
	Capacitor	Ks → 0 pu	C	-

Tabela 26 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), uma indutância de 0,5 mH e uma capacitância de 25 uF. Foram medidas as variáveis de tensão e corrente na indutância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.9).

Figura 69- Forma de onda de tensão da simulação do circuito LC no software ATP.

Figura 70 - Forma de onda de tensão da simulação do circuito LC no software PS Simul.

Figura 71- Forma de onda de corrente da simulação do circuito LC no software ATP.

Figura 72 - Forma de onda de corrente da simulação do circuito LC no software PS Simul.

4.10 Cenário 10 - Energização de circuito RL com fonte AC no instante t = 0s, com condições iniciais de corrente na indutância.

~	ATP		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
	•	RES $\rightarrow 10 \Omega$	-*∕∕∕∕ R	Resistência → 10 Ω
10	→I(0)	L → 100 mH	*****	Indutância→100e-3 H
	•-0000-•	-		Hab. Inicial. \rightarrow Sim
	L:I(0)	$I(0) \rightarrow 5 A$	L	Corrente Inic. \rightarrow 5 A

Tabela 27 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), uma resistência de 10 ohms e uma indutância de 100 mH com condição de corrente inicial de 5 A. Foram medidas as variáveis de tensão e corrente na indutância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.10).

Figura 73- Forma de onda de tensão da simulação do circuito RL no software ATP.

Figura 74 - Forma de onda de tensão da simulação do circuito RL no software PS Simul.

Figura 75- Forma de onda de corrente da simulação do circuito RL no software ATP.

Figura 76 - Forma de onda de corrente da simulação do circuito RL no software PS Simul.

4.11 Cenário 11 - Energização de circuito RC com fonte AC no instante t = 0s, com condições iniciais de tensão na capacitância.

	ATP		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
	•\//\-• Resistor	RES $\rightarrow 10 \Omega$	-*///- R	Resistência → 10 Ω
11	Ulio	C → 1000 uF		Capacitância → 1e-3 F
	╺─╢─╸	-	<u>•</u>	Hab. Inicial. \rightarrow Sim
	C: V(0)	$V(0)+ \rightarrow 50 V$ $V(0)- \rightarrow 0 V$	С	Tensão Inic. → 50 V

Tabela 28 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), uma resistência de 10 ohms e uma capacitância de 1000 uF com condição de tensão inicial de 50 V. Foram medidas as variáveis de tensão e corrente na capacitância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.11).

Figura 77- Forma de onda de tensão da simulação do circuito RC no software ATP.

Figura 78 - Forma de onda de tensão da simulação do circuito RC no software PS Simul.

Figura 79- Forma de onda de corrente da simulação do circuito RC no software ATP.

Figura 80 - Forma de onda de corrente da simulação do circuito RC no software PS Simul.

4.12 Cenário 12 - Energização de circuito RLC com fonte AC no instante t = 0s.

~	ATP		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
	•\//\/-• Resistor	RES \rightarrow 0,01 Ω	-*/// R	Resistência → 0,01 Ω
12	•-7777-•	L → 0,5 mH	<u></u>	Indutância → 0,5e-3 H
12	Inductor	Kp → 0 pu	L	-
	•	$C \rightarrow 25 \text{ uF}$	•	Capacitância → 25e-6 F
	Capacitor	Ks → 0 pu	C	-

Tabela 29 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), uma resistência de 0,01 ohms, uma indutância de 0,5 mH e uma capacitância de 25 uF com condição de tensão inicial de 50 V. Foram medidas as variáveis de tensão e corrente na indutância. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.12).

Figura 81- Forma de onda de tensão da simulação do circuito RLC no software ATP.

Figura 83- Forma de onda de corrente da simulação do circuito RLC no software ATP.

Figura 84 - Forma de onda de corrente da simulação do circuito RLC no software PS Simul.

4.13 Cenário 13 - Energização de circuito RL trifásico.

~	ATP		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
		-	°	Tipo → RL
12		-	B	Valores Iguais → Sim
13	RLC	$R_1=2=3 → 10 Ω$	<u>-</u>	Resistência $\rightarrow 10 \Omega$
		L_1=2=3 → 100 mH	RLC 3Φ Série	Indutância → 100e-3 H

Tabela 30 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), conectada a uma carga RL série com R = 10 ohms e L = 100 mH, através de uma chave. A fase A da chave irá fechar no instante t = 0s, a fase B em t = 0,01s e a fase C em t = 0,02s. Foram medidas as variáveis de tensão e corrente que fluem pela carga. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.13).

Figura 85- Forma de onda das tensões da simulação do circuito RL no software ATP.

Figura 86 - Forma de onda das tensões da simulação do circuito RL no software PS Simul.

Figura 87- Forma de onda das correntes da simulação do circuito RL no software ATP.

Figura 88 - Forma de onda das correntes da simulação do circuito RL no software PS Simul.

4.14 Cenário 14 - Energização de circuito RC trifásico.

~	ATP		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
		-	Å	Tipo → RC
14		-	B	Valores Iguais \rightarrow Sim
14	RLC	R_1=2=3 → 10 Ω	£	Resistência $\rightarrow 10 \Omega$
		C_1=2=3 → 1000 uF	RLC 3Φ Série	Capacitância → 1e-3 F

Tabela 31 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), conectada a uma carga RC série com R = 10 ohms e C =1000 uF, através de uma chave. A fase A da chave irá fechar no instante t = 0s, a fase B em t = 0,01s e a fase C em t = 0,02s. Foram medidas as variáveis de tensão e corrente que fluem pela carga. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.14).

Figura 89- Forma de onda das tensões da simulação do circuito RC no software ATP.

Figura 90 - Forma de onda das tensões da simulação do circuito RC no software PS Simul.

Figura 91- Forma de onda das correntes da simulação do circuito RC no software ATP.

Figura 92 - Forma de onda das correntes da simulação do circuito RC no software PS Simul.

4.15 Cenário 15 - Energização de circuito LC trifásico.

~	АТР		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
		-		Tipo → LC
15		-	B	Valores Iguais \rightarrow Sim
15	RLC	L_1=2=3 → 0,5 mH	<u>د ۲۰۰۰</u> -	Indutância → 0,5e-3 H
		C_1=2=3 → 25 uF	RLC 3Φ Série	Capacitância → 25e-6 F

Tabela 32 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), conectada a uma carga LC série com L = 0,5 mH e C = 25 uF, através de uma chave. A fase A da chave irá fechar no instante t = 0s, a fase B em t = 0,002s e a fase C em t = 0,004s. Foram medidas as variáveis de tensão e corrente que fluem pela carga. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.15).

Figura 93- Forma de onda das tensões da simulação do circuito LC no software ATP.

Figura 94 - Forma de onda das tensões da simulação do circuito LC no software PS Simul.

Figura 95- Forma de onda das correntes da simulação do circuito LC no software ATP.

Figura 96 - Forma de onda das correntes da simulação do circuito LC no software PS Simul.

4.16 Cenário 16 - Energização de circuito RLC trifásico.

~	АТР		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
		-		Tipo \rightarrow RLC
16	•- <mark>≡</mark> -•	-		Valores Iguais \rightarrow Sim
		$R_1=2=3 → 0,1 Ω$		Resistência $\rightarrow 0,1 \Omega$
	RLC	L_1=2=3 → 0,5 mH		Indutância → 0,5e-3 H
		C_1=2=3 → 25 uF	RLC 30 Série	Capacitância → 25e-6 F

Tabela 33 - Parametrizações dos elementos passivos no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz), conectada a uma carga RLC série com R = 0,1 ohms, L = 0,5 mH e C = 25 uF, através de uma chave. A fase A da chave irá fechar no instante t = 0s, a fase B em t = 0,001s e a fase C em t = 0,002s. Foram medidas as variáveis de tensão e corrente que fluem pela carga. O passo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (4.17.16).

Figura 97- Forma de onda das tensões da simulação do circuito RLC no software ATP.

Figura 98 - Forma de onda das tensões da simulação do circuito RLC no software PS Simul.

Figura 99- Forma de onda das correntes da simulação do circuito RLC no software ATP.

Figura 100 - Forma de onda das correntes da simulação do circuito RLC no software PS Simul.
4.17 Circuitos modelados para as validações realizadas

4.17.1 Cenário 01 - Energização RL com fonte DC (4.1)

Figura 101 - Circuitos RL alimentados por fonte DC modelados em ambos os softwares.

4.17.2 Cenário 02 - Energização RC com fonte DC (4.2)

Figura 102 – Circuitos RC alimentados por fonte DC modelados em ambos os softwares.

4.17.3 Cenário 03 – Energização LC com fonte DC (4.3)

Figura 103 - Circuitos LC alimentados por fonte DC modelados em ambos os softwares.

4.17.4 Cenário 04 - Energização RL com fonte DC - Condições Iniciais (4.4)

Figura 104 – Circuitos RL alimentados por fonte DC modelados em ambos os softwares.

4.17.5 Cenário 05 – Energização RC com fonte DC – Condições Iniciais (4.5)

Figura 105 - Circuitos RC alimentados por fonte DC modelados em ambos os softwares.

4.17.6 Cenário 06 - Energização RLC com fonte DC (4.6)

Figura 106 - Circuitos RLC alimentados por fonte DC modelados em ambos os softwares.

4.17.7 Cenário 07 - Energização RL com fonte AC (4.7)

Figura 107 - Circuitos RL alimentados por fonte AC modelados em ambos os softwares.

4.17.8 Cenário 08 – Energização RC com fonte AC (4.8)

Figura 108 – Circuitos RC alimentados por fonte AC modelados em ambos os softwares.

4.17.9 Cenário 09 – Energização LC com fonte AC (4.9)

Figura 109 - Circuitos LC alimentados por fonte AC modelados em ambos os softwares.

4.17.10 Cenário 10 - Energização RL com fonte AC - Condições Iniciais (4.10)

Figura 110 - Circuitos RL alimentados por fonte AC modelados em ambos os softwares.

4.17.11 Cenário 11 - Energização RC com fonte AC - Condições Iniciais (4.11)

Figura 111 - Circuitos RC alimentados por fonte AC modelados em ambos os softwares.

4.17.12 Cenário 12 - Energização RLC com fonte AC (4.12)

Figura 112 - Circuitos RLC alimentados por fonte AC modelados em ambos os softwares.

4.17.13 Cenário 13 - Energização RL trifásico (4.13)

Figura 113 - Circuitos RL trifásicos modelados em ambos os softwares.

4.17.14 Cenário 14 – Energização RC trifásico (4.14)

Figura 114 - Circuitos RC trifásicos modelados em ambos os softwares.

4.17.15 Cenário 15 – Energização LC trifásico (4.15)

Figura 115 - Circuitos LC trifásicos modelados em ambos os softwares.

4.17.16 Cenário 16 – Energização RLC trifásico (4.16)

Figura 116 - Circuitos RLC trifásicos modelados em ambos os softwares.

5 Capítulo 05 - Elementos Não Lineares

Este capítulo abrange os principais elementos não lineares disponibilizados pelo software ATP e seus equivalentes no software PS Simul. A fim de validá-los, foi modelado um caso para cada tipo de elemento não linear do software ATP, sendo estes alimentados por fontes AC.

5.1 Cenário 01 - Resistência não linear (type 99) alimentada por tensão AC.

	АТР	PS S	Simul
Componente	Parametrização	Componente	Parametrização
	Vflash $\rightarrow 0$ V		Tensão p∕ Operar → 0 V
80)	Tdelay $\rightarrow 0$ s	B(i) 🦟	T. Mín. Operando → 0 s
•_////-•	-	-^√X⁄\	Forçar Segm. Inic → Sim
<i>R</i> (<i>i</i>) <i>Type</i> 99	Jump $\rightarrow 0$	Rvar(i) – Pseudo Linear	Segm. Inic $\rightarrow 0$
	VSEAL $\rightarrow 0$ V		Tensão p∕ Abrir → 0 V

Tabela 34 - Parametrizações dos elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 400 kV de pico (60 Hz) conectada a uma resistência não-linear do tipo 99 do ATP (ou do tipo R(i) Pseudo-Linear do PS Simul). Foi medida a corrente da resistência. O passo de tempo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (5.10.1). Nesta simulação, a curva cadastrada foi obtida de um para-raios ZnO, sem gap, com tensão nominal de 144 kV e segue apresentada abaixo:

Tabela 35 - Curva cadastrada na resistência não linear tipo 99 (Pseudo-Linear).

Corrente (kA)	1,5	3	5	10	20	40	100
Tensão (kV)	289	302	312	328	361	394	400

Figura 117- Forma de onda de corrente do circuito modelado no software ATP.

Figura 118 - Forma de onda de corrente do circuito modelado no software PS Simul.

Figura 119 - Curva levantada da simulação no software ATP (V x I).

Figura 120 - Curva levantada da simulação no software PS Simul (V x I).

5.2 Cenário 02 - Resistência não linear (type 92) alimentada por tensão AC.

ATP		PS Simul		
Componente	Parametrização	Componente	Parametrização	
	NFLASH $\rightarrow 0$	R(i)	Tipo de Fch/Abr → Fch/Abr N Vezes	
• V V • • 92	RLIN $\rightarrow 0 \Omega$	-///-	R série $\rightarrow 0 \Omega$	
<i>R(i) Type 92</i>	Vzero $\rightarrow 0$ V	Rvar(i) – Real (Thevenin)	Tensão p∕ Operar → 0 V	

Tabela 36 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 400 kV de pico (60 Hz) conectada a uma resistência não-linear do tipo 92 do ATP (ou do tipo R(i) Thevenin do PS Simul). Foi medida a corrente da resistência. O passo de tempo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (5.10.2). A curva cadastrada foi obtida de um para-raios ZnO, sem gap, com tensão nominal de 144 kV e segue apresentada abaixo:

Tabela 37 - Curva cadastrada na resistência não linear tipo 92 (Thevenin).

Corrente (kA)	1,5	3	5	10	20	40	100
Tensão (kV)	289	302	312	328	361	394	400

Figura 121- Forma de onda de corrente do circuito modelado no software ATP.

Figura 122 - Forma de onda de corrente do circuito modelado no software PS Simul.

Figura 123 - Curva levantada da simulação no software ATP (V x I).

Figura 124 - Curva levantada da simulação no software PS Simul (V x I).

5.3 Cenário 03 - Resistência não linear (type 97) alimentada por tensão AC.

АТР		PS Simul		
Componente	Parametrização	Componente	Parametrização	
• NY -•	Vflash $\rightarrow 0$ V		Tensão p∕ Operar → 0 V	
R(t) Type 97	Tdelay $\rightarrow 0$ s	Rvar(t) – Pseudo Linear	Delay p/ Operar $\rightarrow 0$ s	

Tabela 38 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (50 Hz) conectada a uma resistência não-linear do tipo 97 do ATP (ou do tipo R(t) Pseudo-linear do PS Simul). Foi medida a corrente da resistência. O passo de tempo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (5.10.3). A curva cadastrada neste cenário foi a seguinte:

Tabela 39 - Curva cadastrada na resistência não linear tipo 97 (Pseudo-Linear).

Tempo (s)	0,00	0,02	0,04	0,06	0,08
Resistência (Ω)	1	2	3	4	5

Figura 125- Forma de onda de corrente do circuito modelado no software ATP.

Figura 126 - Forma de onda de corrente do circuito modelado no software PS Simul.

5.4 Cenário 04 - Resistência não linear (type 91) alimentada por tensão AC.

ATP		PS Simul		
Componente	Parametrização	Componente	Parametrização	
R(t) Type 91	Vstart → 1 V	R(t) Rvar(t) – Real (Thevenin)	Tensão p∕ Operar → 1 V	

Tabela 40 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz) conectada a uma resistência não-linear do tipo 91 do ATP (ou do tipo R(t) Thevenin do PS Simul). Foi medida a corrente da resistência. O passo de tempo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (5.10.4). A curva cadastrada neste cenário foi a seguinte:

Tabela 41 - Curva cadastrada na resistência não linear tipo 91 (Thevenin).

Tempo (s)	0,00	0,02	0,04	0,06	0,08
Resistência (Ω)	1	2	3	4	5

Figura 127- Forma de onda de corrente do circuito modelado no software ATP.

Figura 128 - Forma de onda de corrente do circuito modelado no software PS Simul.

5.5 Cenário 05 - Indutância não linear (type 98) alimentada por tensão AC.

АТР		PS Simul		
Componente	Parametrização	Componente	Parametrização	
•mm-	$CURR \rightarrow 0 A$	∴nfn_	Corrente Inicial (I0) \rightarrow 0 A	
L(i) Type 98	FLUX \rightarrow 0 Wb	ے Lvar – Pseudo Linear	Fluxo Inicial ($\Phi 0$) $\rightarrow 0$ Wb	

Tabela 42 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 24 kV de pico (60 Hz) conectada a uma indutância não-linear do tipo 98 do ATP (ou do tipo Lvar - Pseudo-Linear do PS Simul), visando provoca o fluxo (pico) de 63,65 Wb. Foi medida a corrente da indutância. Os circuitos modelados podem ser consultados no tópico (5.10.5). O passo de tempo utilizado na simulação foi de 1 us. A curva cadastrada neste cenário foi obtida de um transformador e segue apresentada abaixo:

Tabela 43 - Curva cadastrada na indutância não linear tipo 98 (Pseudo-Linear).

Corrente (A)	0,041	0,41	4,1	41	100
Fluxo (Wb)	51,81	58,41	63,28	65,53	66,00

Figura 129- Forma de onda de corrente do circuito modelado no software ATP.

Figura 130 - Forma de onda de corrente do circuito modelado no software PS Simul.

Figura 131 – Curva levantada da simulação no software ATP (I x Fluxo).

Figura 132 - Curva levantada da simulação no software PS Simul (I x Fluxo).

5.6 Cenário 06 - Indutância não linear (type 93) alimentada por tensão AC.

АТР		PS Simul		
Componente	Parametrização	Componente	Parametrização	
•1771-	CURR \rightarrow 0 A	-mh-	Corrente Inicial (I0) \rightarrow 0 A	
L(i) Type 93	FLUX \rightarrow 0 Wb	Lvar – Real (Thevenin)	Fluxo Inicial ($\Phi 0$) $\rightarrow 0$ Wb	

Tabela 44 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 24 kV de pico (60 Hz) conectada a uma indutância não-linear do tipo 93 do ATP (ou do tipo Lvar – Real (Thevenin) do PS Simul), visando provoca o fluxo (pico) de 63,65 Wb. Foi medida a corrente da indutância. Os circuitos modelados podem ser consultados no tópico (5.10.6). O passo de tempo utilizado na simulação foi de 1 us. A curva cadastrada neste cenário foi obtida de um transformador e segue apresentada abaixo:

Tabela 45 - Curva cadastrada na indutância não linear tipo 93 (Thevenin).

Corrente (A)	0,041	0,41	4,1	41	100
Fluxo (Wb)	51,81	58,41	63,28	65,53	66,00

Figura 133- Forma de onda de corrente do circuito modelado no software ATP.

Figura 134 - Forma de onda de corrente do circuito modelado no software PS Simul.

Figura 135 - Curva levantada da simulação no software ATP (I x Fluxo).

Figura 136 - Curva levantada da simulação no software PS Simul (I x Fluxo).

5.7 Cenário 07 - Indutância não linear (type 96) alimentada por tensão AC.

1	АТР	PS Simul		
Componente	Parametrização	Componente	Parametrização	
	CURR $\rightarrow 0$ A	. 17	Corrente Inicial (I0) \rightarrow 0 A	
•771-•	FLUX $\rightarrow 0$ Wb	-2/	Fluxo Inicial ($\Phi 0$) $\rightarrow 0$ Wb	
<i>L</i> (<i>i</i>) <i>Type</i> 96	RESID $\rightarrow 0$ Wb	Lvar Histerese – Pseudo Linear	Fluxo Residual (Φ r) \rightarrow 0 Wb	

Tabela 46 - Parametrizações dos elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz) conectada a uma indutância não-linear do tipo 96 do ATP (ou do tipo Lvar – Histerese (Pseudo Linear) do PS Simul). Foi medida a corrente da indutância. O passo de tempo utilizado na simulação foi de 1 us. Os circuitos modelados podem ser consultados no tópico (5.10.7). A curva cadastrada neste cenário foi a seguinte:

Tabela 47 - Curva cadastrada na indutância não linear tipo 96 (Pseudo-Linear).

Corrente (A)	-3,00	-2,25	-1,88	-1,50	-0,75	-0,37	0	0,37	0,75	1,50	1,88	2,25	3,00
Fluxo (Wb)	-1,20	-1,13	-1,09	-1,05	-0,96	-0,91	-0,85	-0,74	-0,22	0,98	1,06	1,11	1,2

Figura 137- Forma de onda de corrente do circuito modelado no software ATP.

Figura 138 - Forma de onda de corrente do circuito modelado no software PS Simul.

Figura 139 - Curva levantada da simulação no software ATP (I x Fluxo).

Figura 140 - Curva levantada da simulação no software PS Simul (I x Fluxo).

5.8 Cenário 08 - Resistência variável entrada externa alimentada por tensão AC.

	АТР	PS Simul		
Componente	Parametrização	Componente	Parametrização	
R(TACS) Type 91		⊷∕∕∕ Rvar – Entrada Externa	Valor Ini → 1 Ω Valor Máximo → 1e6 Ω Valor Mínimo → 1e-9 Ω	

Tabela 48 - Parametrizações utilizadas nas comparações de elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz) conectada a uma resistência não-linear do tipo R(TACS) 91 do ATP (ou do tipo Rvar – Entrada Externa do PS Simul). Foi medida a corrente da resistência. Para modificar o valor da resistência foi construído um circuito externo com uma fonte rampa de período igual a 0,1 s com valor máximo de 10 V e um limitador impondo valor mínimo de sua saída em 1. O passo de tempo utilizado na simulação foi de 10 us. Os circuitos modelados podem ser consultados no tópico (5.10.8).

Figura 141- Forma de onda de corrente do circuito modelado no software ATP.

Figura 142 - Forma de onda de corrente do circuito modelado no software PS Simul.

•

5.9 Cenário 09 - MOV (Metal Oxide Varist.) type 92 alimentado por tensão AC.

	ATP	PS Simul		
Componente	Parametrização	Componente	Parametrização	
	Vzero $\rightarrow 0$ V		Tensão para Abrir $\rightarrow 0$ V	
_	Vref \rightarrow 1 V		Tensão Referência → 1 V	
•- <u>mov</u> -•	-		Corrente Referência → 1 A	
	$COL \rightarrow 1$	Para-Raio – Pseudo Linear	Número de colunas \rightarrow 1	
MOV Type 92	SER $\rightarrow 1$		Número Blocos Série → 1	
	-		Tipo Curva → I x V	

Tabela 49 - Parametrizações dos elementos não lineares no ATP e PS Simul.

Para tal validação foi utilizada uma fonte AC com amplitude de 100V de pico (60 Hz) conectada a um MOV do tipo 92 do ATP (ou do tipo Para-Raio – Pseudo Linear do PS Simul). Foi levantada a curva de tensão por corrente do par-raio. O passo de tempo utilizado na simulação foi de 1 us. Os circuitos modelados podem ser consultados no tópico (5.10.9). A curva cadastrada neste cenário foi obtida de um para-raios ZnO, sem gap, com tensão nominal de 144 kV e segue apresentada abaixo

Tabela 50 – Curva cadastrada no para-raio.						
Corrente (kA)	1,5	3,0	5,0	10,0	20,0	40,0
Tensão (kV)	289	302	312	328	361	394

5.10 Circuitos modelados para as validações realizadas

5.10.1 Cenário 01 - Resistência não linear (type 99) alimentada por tensão AC (5.1).

Figura 145 – Circuitos modelados em ambos os softwares.

5.10.2 Cenário 02 - Resistência não linear (type 92) alimentada por tensão AC (5.2).

Figura 146 - Circuitos modelados em ambos os softwares.

5.10.3 Cenário 03 - Resistência não linear (type 97) alimentada por tensão AC (5.3).

Figura 147 - Circuitos modelados em ambos os softwares.

5.10.4 Cenário 04 - Resistência não linear (type 91) alimentada por tensão AC (5.4).

Figura 148 - Circuitos modelados em ambos os softwares.

5.10.5 Cenário 05 - Indutância não linear (type 98) alimentada por tensão AC (5.5).

Figura 149 - Circuitos modelados em ambos os softwares.

5.10.6 Cenário 06 - Indutância não linear (type 93) alimentada por tensão AC (5.6).

Figura 150 - Circuitos modelados em ambos os softwares.

5.10.7 Cenário 07 - Indutância não linear (type 96) alimentada por tensão AC (5.7).

Figura 151 - Circuitos modelados em ambos os softwares.

5.10.8 Cenário 08 - Resistência variável (entrada externa) (5.8).

Figura 152 - Circuitos modelados em ambos os softwares.

5.10.9 Cenário 09 - MOV (Metal Oxide Varistor) type 92 (5.9).

Figura 153 – Circuitos modelados em ambos os softwares.

6 Capítulo 06 – Transformadores

Este capítulo abrange os principais transformadores disponibilizados pelo software ATP e seus equivalentes no software PS Simul. A fim de validá-los foi modelado um caso para cada uma das principais variações de configuração dos transformadores, sendo estes elementos alimentados por fontes AC.

6.1 Cenário 01 – Transformador monofásico ideal.

Tabela 51 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.

~		ATP	PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
01	100000	N → 62,727		Rel. Enr. 1/Enr. 2 → 62,727	
01	لِيَّ لِيُّ Ideal 1 phase	BRANCH \rightarrow 1	μ Trf Ideal 1Φ2 Enr	-	

Para tal validação do transformador simulado (100 kVA – 13800/220V), o primário deste foi alimentado por uma barra infinita (7,967 kV) e o secundário conectado a uma carga (127 V - 100 kVA- FP = 0,8). Foram realizadas as leituras das correntes que fluem no primário e secundário do transformador. O passo de tempo utilizado foi de 10 us. Os circuitos modelados podem ser consultados no tópico (6.9.1).

Figura 154 - Forma de onda obtida da corrente do primário do transformador no ATP.

Figura 155 – Forma de onda obtida da corrente do primário do transformador no PS Simul.

Figura 156 - Forma de onda obtida da corrente do secundário do transformador no ATP.

Figura 157 – Forma de onda obtida da corrente do secundário do transformador no PS Simul.

6.2 Cenário 02 – Transformador monofásico real.

Cenário		ATP	PS Simul		
	Componente	Parametrização	Componente	Parametrização	
	PE	Rmag \rightarrow 100000 Ω		Resist. Rm \rightarrow 100000 Ω	
		$Rp \rightarrow 10,6 \Omega$		REnr. 1 \rightarrow 10,6 Ω	
		Lp → 110 mH		LEnr. 1 → 110e-3 H	
02	$\frac{\mathbf{A}}{\mathbf{L}} = \frac{\mathbf{A}}{\mathbf{L}}$	Vrp → 13,8 kV		VEnr. 1 → 13,8e3 V	
		Rs \rightarrow 0,03 Ω	Trf Real 1Φ 2	REnr. 2 \rightarrow 0,03 Ω	
	Sauraore i phase	Ls \rightarrow 0,028 mH	Enr	LEnr. 2 → 0,028e-3 H	
		$Vrs \rightarrow 0,22 kV$		VEnr. 2 \rightarrow 220 V	

Tabela 52 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.

Para tal validação do transformador simulado (100 kVA – 13800/220V), o primário deste foi alimentado através de uma barra infinita (7,967 kV) e o secundário conectado a uma carga (127 V - 100 kVA – FP = 0.8). Foram considerados transformadores com núcleos ideais e realizaram-se as leituras das correntes que fluem no primário e secundário do transformador. O passo de tempo utilizado foi de 10 us. Os circuitos modelados podem ser consultados no tópico (6.9.2).

Figura 158 - Forma de onda obtida da corrente do primário do transformador no ATP.

Figura 159 – Forma de onda obtida da corrente do primário do transformador no PS Simul.

Figura 160 - Forma de onda obtida da corrente do secundário do transformador no ATP.

Figura 161 – Forma de onda obtida da corrente do secundário do transformador no PS Simul.

6.3 Cenário 03 – Transformador trifásico ideal Y-Y.

		ATP	PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
		-		Conex Enr. 1 \rightarrow Y	
	-	-	l fyzt	Conex Enr. 2 \rightarrow Y	
03	ب کی ک	-	f f f f f f f f f f f f f f f f f f f	Grupo Vet. Enr. 2 $\rightarrow 0$	
		N → 36,316	- Trf Ideal 3Φ	Rel. Enr. 1/Enr. 2 → 36,316	
	lucui 5 phase	BRANCH \rightarrow 1	2 Enr	-	

Tabela 53 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.

Para tal validação do transformador simulado (300 kVA – 13800/380V), o primário deste foi alimentado através de uma barra infinita (13,8 kV F-F) e o secundário conectado a uma carga (380 V - 300 kVA – FP = 0,8). Foram realizadas as leituras das correntes que fluem no primário e secundário do transformador. O passo de tempo utilizado foi de 10 us. Os circuitos modelados podem ser consultados no tópico (6.9.3).

Figura 163 – Forma de onda obtida das correntes do primário do transformador no PS Simul.

Figura 164 - Forma de onda obtida das correntes do secundário do transformador no ATP.

Figura 165 - Forma de onda obtida das correntes do secundário do transformador no PS Simul.

CONPROVE

6.4 Cenário 04 – Transformador trifásico real Υ-Δ.

~		ATP	PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
		U Prim → 7967,43 V		VEnr. 1 FF → 13800 V	
	ملاري الم	U Sec → 380 V		VEnr. 2 FF → 380 V	
		R Prim \rightarrow 10,6 Ω	-∿-	REnr. 1 \rightarrow 10,6 Ω	
		R Sec $\rightarrow 0.03 \Omega$	-12-	REnr. 2 \rightarrow 0,03 Ω	
04	<u> </u>	L Prim → 110 mH		LEnr. 1 → 110e-3 H	
04	Ţ	L Sec → 0,028 mH		LEnr. 2 → 0,028e-3 H	
	Saturable 3 phase	Conex Prim \rightarrow Y	÷	Conex Enr. 1 \rightarrow Y	
	(2-winding)	Conex Sec \rightarrow D	Trf Real 3Φ	Conex Enr. 2 \rightarrow D	
		Phase Shift Sec \rightarrow 30°	2 Enr	Grupo Vet. Enr. 2 \rightarrow 1	
		$Rm \rightarrow 1000000 \Omega$		Resist. Rm \rightarrow 1000000 Ω	

Tabela 54 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.

Para tal validação do transformador simulado (300 kVA – 13800/380V), o primário deste foi alimentado através de uma barra infinita (13,8 kV F-F) e o secundário conectado a uma carga (380 V - 300 kVA – FP = 0,8). Foram considerados transformadores com núcleos ideais e realizaram-se as leituras das correntes que fluem no primário e secundário do transformador. O passo de tempo utilizado foi de 10 us. Os circuitos modelados podem ser consultados no tópico (6.9.4).

Figura 167 - Forma de onda obtida das correntes do primário do transformador no PS Simul.

Figura 168 - Forma de onda obtida das correntes do secundário do transformador no ATP.

Figura 169 - Forma de onda obtida das correntes do secundário do transformador no PS Simul.

6.5 Cenário 05 – Autotransformador trifásico real (2 enrolamentos).

		ATP	PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
		-		Tipo Z(Autotransf.) → ZA1 e ZA2	
		-		Hab. Enr. Terciário → Não	
	t_	U Prim → 20700 V	12 A2	VEnr. 1 (A1) FF → 34500 V	
		U Sec → 13800 V		VEnr. 2 (A2) FF → 13800 V	
		R Prim \rightarrow 0,642 Ω	J →	REnrA1 \rightarrow 0,642 Ω	
05	• I	R Sec \rightarrow 0,4277 Ω		REnrA2 \rightarrow 0,4277 Ω	
	± Saturable 3 phase	L Prim → 6,59 mH	÷	LEnrA1 → 6,59e-3 H	
	(2-winding)	L Sec → 4,39 mH	Autotransformador	LEnrA2 → 4,39e-3 H	
	(2 ////////////////////////////////////	Conex Prim \rightarrow A	3Φ Real	-	
		Conex Sec \rightarrow A		-	
		Phase Shift Sec $\rightarrow 0$		-	
		$Rm \rightarrow 1000000 \Omega$		Resist. Rm \rightarrow 1000000 Ω	

Tabela 55 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.

Para tal validação do autotransformador simulado (6400 kVA – 34,5/13,8 kV), o primário deste foi alimentado através de uma barra infinita (34,5 kV F-F) e o secundário conectado a uma carga (13,8 kV - 5000 kVA – FP = 0,8). Foram considerados transformadores com núcleos ideais e realizaram-se as leituras das correntes que fluem no primário e secundário do transformador. O passo de tempo utilizado foi de 10 us. Os circuitos modelados podem ser consultados no tópico (6.9.5).

Figura 170 - Forma de onda obtida das correntes do primário do autotransformador no ATP.

Figura 171 – Forma de onda obtida das correntes do primário do autotransformador no PS Simul.

Figura 172 - Forma de onda obtida das correntes do secundário do autotransformador no ATP.

Figura 173 - Forma de onda obtida das correntes do secundário do autotransformador no PS Simul.

6.6 Cenário 06 – Transformador trifásico real Y-Y-D.

~		ATP	PS Simul		
Cenário	Componente	Parametrização	Componente	Parametrização	
06	Saturable 3 phase (3-winding)	U Prim → 132689,56 V U Sec → 50806,823 V U Tert → 13800 V R Prim → 0,328 Ω R Sec → 0,065 Ω R Tert → 0,029 Ω L Prim → 103,51 mH L Sec → 1,05 mH L Tert → 1,84 mH Conex Prim → Y Conex Sec → Y	$\frac{4}{10} + \frac{1}{10} $	VEnr. 1 FF \rightarrow 230000 V VEnr. 2 FF \rightarrow 88000 V VEnr. 3 FF \rightarrow 13800 V REnr. 1 \rightarrow 0,328 Ω REnr. 2 \rightarrow 0,065 Ω REnr. 3 \rightarrow 0,029 Ω LEnr. 1 \rightarrow 103,51e-3 H LEnr. 2 \rightarrow 1,05e-3 H LEnr. 3 \rightarrow 1,84e-3 H Conex Enr. 1 \rightarrow Y Conex Enr. 2 \rightarrow Y	
		Conex Tert \rightarrow D Phase Shift Sec $\rightarrow 0^{\circ}$		Conex Enr. $2 \rightarrow D$ Grupo Vet. Enr. $2 \rightarrow 0$	
		Phase Shift Tert $\rightarrow 30^{\circ}$ Rm $\rightarrow 1000000 \Omega$		Grupo Vet. Enr. $3 \rightarrow 1$ Resist. Rm $\rightarrow 1000000 \Omega$	

Tabela 56 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.

Para tal validação do transformador simulado (100/100/18 MVA - 230/88/13,8 kV), o primário deste foi alimentado através de uma barra infinita (230 kV F-F), o secundário conectado a uma carga (88 kV - 80 MVA - FP = 0,8) e o terciário a outra carga (13,8 kV - 15 MVA - FP = 0,8). Foram considerados transformadores com núcleos ideais e realizaram-se as leituras das correntes dos enrolamentos primário, secundário e terciário do transformador. O passo de tempo utilizado foi de 10 us. Os circuitos modelados podem ser consultados no tópico (6.9.6).

Figura 175 - Forma de onda obtida das correntes do primário do transformador no PS Simul.

Figura 176 - Forma de onda obtida das correntes do secundário do transformador no ATP.

Figura 177 - Forma de onda obtida das correntes do secundário do transformador no PS Simul.

Figura 178 - Forma de onda obtida das correntes do terciário do transformador no ATP.

Figura 179 - Forma de onda obtida das correntes do terciário do transformador no PS Simul.

6.7 Cenário 07 – Autotransformador trifásico real com terciário D.

Cenário		ATP	PS Simul		
Conurro	Componente	Parametrização	Componente	Parametrização	
07	Componente	Parametrização - U Prim \rightarrow 11951,15 V U Sec \rightarrow 7967,43 V U Tert \rightarrow 2400 V R Prim \rightarrow 0,642 Ω R Sec \rightarrow 0,4277 Ω R Tert \rightarrow 0,024 Ω L Prim \rightarrow 6,59 mH L Sec \rightarrow 4,39 mH L Tert \rightarrow 0,246 mH Conex Prim \rightarrow A Conex Sec \rightarrow A Conex Tert \rightarrow D	Componente	Parametrização Tipo Z(Autotransf.) → ZA1 e ZA2 Hab. Enr. Terciário → Sim VEnr. 1 (A1) FF → 34500 V VEnr. 2 (A2) FF → 13800 V VEnr. 2 (A2) FF → 13800 V VEnr. 2 (A2) FF → 13800 V REnrA1 → 0,642 Ω REnrA1 → 0,642 Ω REnrA2 → 0,4277 Ω REnrT → 0,024 Ω LEnrA1 → 6,59e-3 H LEnrA2 → 4,39e-3 H LEnrA2 → 4,39e-3 H LEnrT → 0,246e-3 H - Conex. Enr. T → D	
		Phase Shift Sec $\rightarrow 0$		-	
		Phase Shift Tert \rightarrow 30		Grupo Vet Enr. T \rightarrow 1	
		$Rm \rightarrow 1000000 \Omega$		Resist Rm → 1000000 Q	

Tabela 57 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.

Para tal validação do autotransformador simulado (6,4/6,4/2,4 MVA - 34,5/13,8/2,4 kV), seu primário foi alimentado por uma barra infinita (34,5 kV), o secundário conectado a uma carga (13,8 kV - 5 MVA - FP = 0,8) e o terciário conectado a outra carga (2,4 kV-2 MVA - FP = 0,8). Foram considerados transformadores com núcleos ideais e realizaram-se medições das correntes que fluem no primário, secundário e terciário do transformador. O passo de tempo utilizado foi de 10 us. Os circuitos modelados podem ser consultados no tópico (6.9.7).

Figura 181 - Forma de onda obtida das correntes do primário do transformador no PS Simul.

Figura 183 - Forma de onda obtida das correntes do secundário do transformador no PS Simul.

Figura 184 - Forma de onda obtida das correntes do terciário do transformador no ATP.

Figura 185 - Forma de onda obtida das correntes do terciário do transformador no PS Simul.
6.8 Cenário 08 – Transformador trifásico real Δ-Y (saturação).

a		ATP	PS Simul			
Cenário	Componente	Parametrização	Componente	Parametrização		
		U Prim → 13800 V		VEnr. 1 FF → 13800 V		
		U Sec → 219,393 V		VEnr. 2 FF → 380 V		
		R Prim \rightarrow 10,6 Ω		REnr. 1 → 10,6 Ω		
	†	R Sec $\rightarrow 0,028 \Omega$	_≁ r	REnr. 2 \rightarrow 0,028 Ω		
	-100 <u>1-</u>	L Prim → 110 mH	+(1)2)+	LEnr. 1 → 110e-3 H		
04	~~ `	L Sec → 0,027 mH		LEnr. 2 → 0,027e-3 H		
04	÷	Conex Prim \rightarrow D	÷	Conex Enr. 1 \rightarrow D		
	Saturable 3 phase	Conex Sec \rightarrow Y	Trf Real 3Φ	Conex Enr. 2 \rightarrow Y		
	(2-winding)	Phase Shift Sec $\rightarrow 30^{\circ}$	2 Enr	Grupo Vet. Enr. 2 \rightarrow 1		
		$Rm \rightarrow 1000000 \Omega$		Resist. Rm \rightarrow 1000000 Ω		
		$I(0) \rightarrow 0,184 \text{ A}$		Corrente Inic. (I0) \rightarrow 0,184A		
		$F(0) \rightarrow 51,8 \text{ Wb}$		Fluxo Inic. $(\Phi 0) \rightarrow 51,8Wb$		

Tabela 58 - Parametrizações utilizadas nas comparações de transformadores no ATP e PS Simul.

Para tal validação do transformador simulado (300 kVA – 13800/380V), o primário deste foi alimentado através de uma barra infinita (13,8 kV F-F) e o secundário conectado a uma carga (380 V - 300 kVA – FP = 0,8). A curva de saturação considerada neste cenário segue:

Tabela 59 – Curva cadastrada no para-raio.

Corrente (A)	0,0184	0,184	1,84
Fluxo (Wb)	6,475	51,8	52,2

No instante t = 50 ms foi simulada uma sobretensão para 1,2 pu no primário do transformador. Realizaram-se as leituras das correntes que fluem no primário e secundário do transformador. O passo de tempo utilizado foi de 10 us. Os circuitos modelados podem ser consultados no tópico (6.9.8).

Figura 186 - Forma de onda obtida das correntes do primário do transformador no ATP.

Figura 187 - Forma de onda obtida das correntes do primário do transformador no PS Simul.

Figura 189 - Forma de onda obtida das correntes do secundário do transformador no PS Simul.

6.9 Circuitos modelados para as validações realizadas

6.9.1 Cenário 01 – Transformador monofásico ideal (6.1).

Figura 190 - Circuitos modelados em ambos os softwares.

6.9.2 Cenário 02 – Transformador monofásico real (6.2).

Figura 191 - Circuitos modelados em ambos os softwares.

6.9.3 Cenário 03 – Transformador trifásico ideal Y-Y (6.3).

ATP

PS SIMUL

Figura 192 - Circuitos modelados em ambos os softwares.

6.9.4 Cenário 04 – Transformador trifásico real Y- Δ (6.4).

Figura 193 - Circuitos modelados em ambos os softwares.

6.9.5 Cenário 05 – Autotransformador trifásico real (2 enrolamentos) (6.5).

Figura 194 - Circuitos modelados em ambos os softwares.

6.9.6 Cenário 06 – Transformador trifásico real Y-Y-D (6.6).

Figura 195 – Circuitos modelados em ambos os softwares.

6.9.7 Cenário 07 – Autotransformador trifásico real com terciário D (6.7).

Figura 196 - Circuitos modelados em ambos os softwares.

6.9.8 Cenário 08 - - Transformador trifásico real Δ -Y (saturação) (6.8).

Figura 197 – Circuitos modelados em ambos os softwares.

7 Capítulo 07 - Linhas e Cabos

Este capítulo abrange os principais modelos de linhas e cabos disponibilizados pelo software ATP e seus equivalentes no software PS Simul. A fim de valida-los, foram modelados casos simples para diversas variações de linhas/cabos.

7.1 Cenário 01 – Linha PI monofásica.

Cenário	AT	'P	PS Simul			
Conurro	Componente	Parametrização	Componente	Parametrização		
				Entrada Dados→Matriz		
		-		RLC		
		-		Transposta → Não		
				Parâmetros		
01	• <u>1 </u>	_		Distribuídos→Não		
01	RLC Pi-equiv.1 (1	-	Linha	Modelo \rightarrow PI		
	phase)	-		N° Fases $\rightarrow 1$		
		$R \rightarrow 5,8587 \Omega$		R11 → 5,8587 Ω		
		L → 68,609 mH		L11 → 68,609e-3 H		
		C → 0,5956 uF		C11 → 0,5956e-6 F		

Tabela 60 - Parametrizações utilizadas nas linhas do ATP e PS Simul.

Para tal validação foi realizada a energização da linha através de uma fonte AC cossenoidal com amplitude de 408,248 kV de pico (60 Hz). O terminal remoto foi mantido aberto. Com isso, foram simulados dois cenários: no primeiro a linha será energizada quando a fonte passa por seu valor de pico (t = 0 s) e no segundo quando a fonte passa pelo valor zero (t = 4,166 ms). Foram realizadas as leituras das tensões em ambos os terminais da linha, a fim de verificar os transitórios de energização. O passo utilizado foi de 10 us. Os circuitos modelados estão dispostos no tópico (7.8.1).

Figura 199 – Tensões em ambos os terminais (PS SIMUL) para energização em t = 0 s.

Figura 200 – Tensões em ambos os terminais (ATP) para energização em t = 4,166 ms.

Figura 201 – Tensões em ambos os terminais (PS SIMUL) para energização em t = 4,166 ms.

7.2 Cenário 02 – Linha PI trifásica.

a		ATP	PS Simul				
Cenário	Componente	Parametrização	Componente	Parametrização			
		-		Entr. Dados → Matriz RLC			
		-		Transposta → Não			
		-		Parâm. Distribuídos→Não			
		-	_	Modelo → PI			
		-		N° Fases \rightarrow 3			
02	RLC Pi-eauiv. 1	$R(xx) \rightarrow 5,8587 \Omega$		$R(xx) \rightarrow 5,8587 \Omega$			
	(3 phase)	$R(xy) \rightarrow 5,1262 \Omega$	Linho	$R(xy) \rightarrow 5,1262 \Omega$			
		L(xx) → 68,6093 mH	Liilla	L(xx) → 68,6093e-3 H			
		L(xy) → 27,306 mH		L(xy) → 27,306e-3 H			
		$C(xx) \rightarrow 0,5956 \text{ uF}$		C(xx) → 0,5956e-6 F			
		C(xy) → -0,0977 uF		C(xy) → -0,0977e-6 F			

Tabela 61 - Parametrizações utilizadas nas linhas do ATP e PS Simul.

Para tal validação foi realizada a energização da linha através de uma fonte AC cossenoidal com amplitude de 500 kV F-F RMS (60 Hz). O terminal remoto foi mantido aberto. A energização foi realizada no instante t = 10 ms. Foram realizadas as leituras das tensões em ambos os terminais da linha, a fim de verificar os transitórios de energização. O passo utilizado foi de 10 us. Os circuitos modelados estão dispostos no tópico (7.8.2).

Figura 203 - Tensões na fase A de ambos os terminais (PS SIMUL).

Figura 205 - Tensões na fase B de ambos os terminais (PS SIMUL).

Figura 206 - Tensões na fase C de ambos os terminais (ATP).

7.3 Cenário 03 – Linha Bergeron monofásica.

Cenário		ATP	PS Simul			
	Componente	Parametrização	Componente	Parametrização		
		-		Entrada Dados → Matriz RLC		
		-		Transposta → Não		
		-		Parâm. Distribuídos → Sim		
		$L \rightarrow 50 \text{ km}$		Comprimento \rightarrow 50 km		
03	Transposed Lines	ILINE $\rightarrow 0$	<u> </u>	-		
05	(Clarke)	-	Linha	Modelo \rightarrow Bergeron		
	(1 phase)	-		N° Fases → 1		
		R/I → 0,11717 Ω/km		R/l → 0,11717 Ω/km		
		A → 1,3721 mH/km		L/l → 1,3721e-3 H/km		
		B → 0,01191 uF/km		C/l → 0,01191e-6 F/km		

Tabela 62 - Parametrizações utilizadas nas linhas do ATP e PS Simul.

Para tal validação foi realizada a energização da linha através de uma fonte AC cossenoidal com amplitude de 408,248 kV de pico (60 Hz). O terminal remoto foi mantido aberto. Com isso, foram simulados dois cenários: no primeiro a linha será energizada quando a fonte passa por seu valor de pico (t = 0 s) e no segundo quando a fonte passa pelo valor zero (t = 4,166 ms). Foram realizadas as leituras das tensões em ambos os terminais da linha, a fim de verificar os transitórios de energização. O passo de tempo utilizado foi de 1 us. Os circuitos modelados estão disposto no tópico (7.8.3).

Figura 209 – Tensões em ambos os terminais (PS SIMUL) para energização em t = 0 s.

Figura 210 – Tensões em ambos os terminais (ATP) para energização em t = 4,166 ms.

Figura 211 – Tensões em ambos os terminais (PS SIMUL) para energização em t = 4,166 ms.

7.4 Cenário 04 – Linha Bergeron trifásica (Transposta).

a		ATP	PS Simul				
Cenário	Componente	Parametrização	Componente	Parametrização			
		-		Entrada Dados → Matriz Seq			
		-		Transposta \rightarrow Sim			
		-		Tipo Transposição → Total			
	╺╸ <u>╝</u> ╄	-		Parâm. Distribuídos → Sim			
		$L \rightarrow 50 \text{ km}$		Comprimento \rightarrow 50 km			
		ILINE $\rightarrow 0$	<u> </u>	-			
04	Transposed Lines	-		Modelo \rightarrow Bergeron			
04	(Clarke)	-		N° Fases $\rightarrow 3$			
	(3 phase)	R/I + → 0,01465 Ω/km	Linha	R + → 0,01465 Ω/km			
	(* 1 *****)	R/I 0 → 0,32222 Ω/km		R 0 → 0,32222 Ω/km			
		A + → 0,82606 mH/km		L + → 0,82606e-3 H/km			
		A 0 → 2,4644 mH/km		L 0 → 2,4644e-3 H/km			
		B + → 0,0138675 uF/km		C + → 0,0138675e-6 F/km			
		B 0 → 0,0080027 uF/km		C 0 → 0,0080027e-6 F/km			

Tabela 63 - Parametrizações utilizadas nas linhas do ATP e PS Simul.

Para tal validação foi realizada a energização da linha através de uma fonte AC cossenoidal com amplitude de 500 kV F-F RMS (60 Hz). O terminal remoto foi mantido aberto. A energização foi realizada no instante t = 10 ms. Foram realizadas as leituras das tensões em ambos os terminais da linha, a fim de verificar os transitórios de energização. O passo de tempo utilizado foi de 1 us. Os circuitos modelados estão disposto no tópico (7.8.4).

Figura 212 – Tensões na fase A de ambos os terminais (ATP).

Figura 213 – Tensões na fase A de ambos os terminais (PS SIMUL).

Figura 214 – Tensões na fase B de ambos os terminais (ATP).

Figura 215 - Tensões na fase B de ambos os terminais (PS SIMUL).

Figura 216 – Tensões na fase C de ambos os terminais (ATP).

Figura 217 – Tensões na fase C de ambos os terminais (PS SIMUL).

7.5 Cenário 05 – Linha Bergeron trifásica (Cadastro por Geometria).

Cenário	ATP													
	Componente		Parametrização											
05	LCC (Dados Gerais) (Overhead Line)	S.	ystem ty verhea I▼ Tra I▼ <u>A</u> u I▼ <u>Sk</u> i I■ <u>S</u> e I■ <u>R</u> e	upe d Line ansposed to bundling in effect gmented grou al transf. matri	nd	HPh: 3 € Units ○ <u>M</u> etric ○ <u>E</u> nglish		Standard data Model Rho [ohm*m] 1000 Freg. init [Hz] 60 Length [km] 80 C <u>J</u> Marti C Semlyen C <u>N</u> oda						
			Ph.no.	Rin	Rout	Resis	Horiz	Vtower	Vmid	Separ	Alpha	NB		
		#		[cm]	[cm]	[ohm/km DC]	[m]	[m]	[m]	[cm]	[deg]			
		1	1	0	1.4795	0.06	-10	34.5	17.5	45.7	45	4		
	(Geometria)	2	2	0	1.4795	0.06	0	39.4	22.4	45.7	45	4		
	(Overhead Line)	3	3	0	1.4795	0.06	10	34.5	17.5	45.7	45	4		
	(2.111111111121110)	4	0	0	0.6945	0.64	8.65	44.4	27.4	0	0	1		
		5	0	0	0.6945	0.64	-8.65	44.4	27.4	0	0	1		

Tabela 64 - Parametrizações utilizadas no software ATP.

Tabela 65 - Parametrizações utilizadas no software PS Simul.

Cenário	PS Simul													
	Componente	Parametrização												
05	Linha (Dados Gerais)					Second	al Lin/Cbo da de Dados Jência animento 5 Skin sposta Transposição 5 Segmentado metros Distribu alo Calo Z r no LOG esesntação (titividade do Sr de alo p/ conduta alo p/ cond	iídos do Retorno pel olo mes aéreos mes subterrâneo se subterrâneo se subterrâneo se subterrâneo ampoOnda ig Model q Fase ão jo ancia	Geomet 60,00 H 80,00 k Sim Total Não Sim Aproxim Aproxim Aproxim Aproxim Aproxim Bergero Sim Não Distânci Raio Ex 5	ia ado (Wedepohl/Wilco m 2.m ado (Deri-Semlyen) ado (Deri-Semlyen) ado (Lucca) n ia entre condutores te Raio Int				
	Linha	Pto	Fase	Xt	Yt		Ymin	Rext	Rint	RDc	ur	Nc	Dist Arj	Ang
	(Compating)	001	1	-10,00 m	34,50) m	17,50 m	14,80 mm	0 m	60,00 mΩ/km	1,00	4	457,0 mm	45,00 °
	(Geometria)	002	2	0 m	39,40) m	22,40 m	14,80 mm	0 m	60,00 mΩ/km	1,00	4	457,0 mm	45,00 °
		003	3	10,00 m	34,50) m	17,50 m	14,80 mm	0 m	60,00 mΩ/km	1,00	4	457,0 mm	45,00 °
		004	0	8,65 m	44,40) m	27,40 m	6,95 mm	0 m	0,640 Ω/km	1,00	1	0 m	0*
		005	0	-8,65 m	44,40) m	27,40 m	6,95 mm	0 m	0,640 Ω/km	1,00	1	0 m	0*

Para tal validação foi realizada a energização da linha através de uma fonte AC cossenoidal com amplitude de 500 kV F-F RMS (60 Hz). O terminal remoto foi mantido aberto. A energização foi realizada no instante t = 5 ms. Foram realizadas as leituras das tensões em ambos os terminais da linha e das correntes que fluem pelas fases, a fim de verificar os transitórios de energização. O passo utilizado foi de 1 us. Os circuitos modelados estão disposto no tópico (7.8.5).

Figura 218 - Tensões na fase A de ambos os terminais (ATP).

Figura 219 - Tensões na fase A de ambos os terminais (PS SIMUL).

Figura 220 - Tensões na fase B de ambos os terminais (ATP).

Figura 221 - Tensões na fase B de ambos os terminais (PS SIMUL).

7.6 Cenário 06 – Linha com Modelagem em Frequência trifásica (Cadastro por Geometria).

Conório	ATP											
Cellario	Componente					Param	etriza	ação				
06	LCC (Dados Gerais) (Overhead Line)			ivstem typ iverhead ✓ Tran ✓ Auto ✓ Skin □ Segr □ Real (odel ○ Berge ○ Pl (○ JMart ○ Semly ○ Noda	e Line sposed bundling effect mented gro transf. ma eron	Unit ound atrix Data Decades 6 Freq. matrix [F 60	3 € detric English Point 30 Iz] Freq. 0 It fitting	s/Dec	andard dai ;o (ohm*m) ;g. init (Hz; ngth (km)	ta 1000 60 80		
		Ph.	.no. Rin		Rout	Resis	Horiz	Vtower	Vmid	Separ	Alpha	NB
		#	[cm]		[cm]	[ohm/km DC]	[m]	[m]	[m]	[cm]	[deg]	
	LCC	1	0		1.4795	0.06	-10	34.5	17.5	45.7	45	4
	(Geometria)	2 2	0		1.4795	0.06	U	39.4	22.4	45.7	45	4
	(Overhead Line)	3 3	0		1.4795	0.06	10	34.5	17.5	45.7	45	4
		4 0	0		0.6945	0.64	8.65	44.4	27.4	0	0	1
		5 0	0		0.6945	0.64	-8.65	44.4	27.4	0	0	1

Tabela 66 - Parametrizações utilizadas no software ATP.

Tabela 67 - Parametrizações utilizadas no software PS Simul.

Cománia	PS Simul												
Cenario	Componente	Parametrização											
06	Linha (Dados Gerais)	Geel Enth Free Cor Efe Trai Ter Par Mo Fas Mo Mo Inte For	ral Lin/C quência ngrimento ito Skin nsposta o Transpo ra Segme âmetros D delo Calc or no LOC presenta delo delo gropar ca Pi p/D	bo Jados Intado Intado Intribuídos Z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ormo pelo Solo	Beometria 30.00 Hz 30.00 km im otal 48o ym Aproximado (Wed Aod e Ang riq - Modal im	lepohl/Wilcox)		Dados Modelo Frq Modal Frq Cale Mtz Transf (Modal) Frq Inicial (Modal) NF Máx Polos Yo (Modal) NF Máx Polos Ap (Modal) Erro Máx Yo (Modal) Erro Máx Yo (Modal) Erro Máx Ap (Modal) Erro Máx Ap (Modal) Fator Ajuste Frn >Frnáx (Modal) Fator Ajuste Frn >Frnáx (Modal) Pados Modelo Frq Fase Geometria Visualizar Distribuição Definição da Indutância Nª de Condutores)	60,001 100,0 i 30 0,300 : 0,300 : 1 1000 1 Distân Raio E 5	Hz mHz Hz % % %	tores
	Linha (Geometria)	Pto 001 002 003 004 005	Fase 1 2 3 0 0	Xt -10,00 m 0 m 10,00 m 8,65 m -8,65 m	Yt 34,50 m 39,40 m 34,50 m 44,40 m 44,40 m	Ymin 17,50 m 22,40 m 17,50 m 27,40 m 27,40 m	Rext 14,80 mm 14,80 mm 14,80 mm 6,95 mm	Ri 01 01 01 01	int RDc m 60,00 mΩ/km m 60,00 mΩ/km m 60,00 mΩ/km m 60,00 mΩ/km m 0,640 Ω/km	ur 1,00 1,00 1,00 1,00 1,00	Nc 4 4 1 1	Dist Arj 457,0 mm 457,0 mm 457,0 mm 0 m 0 m	Ang 45,00° 45,00° 45,00° 0° 0°

Para tal validação foi realizada a energização da linha através de uma fonte AC cossenoidal com amplitude de 500 kV F-F RMS (60 Hz). O terminal remoto foi mantido aberto. A energização foi realizada no instante t = 5 ms. Foram realizadas as leituras das tensões em ambos os terminais da linha e das correntes que fluem pelas fases, a fim de verificar os transitórios de energização. O passo utilizado foi de 1 us. Os circuitos modelados estão disposto no tópico (7.8.6).

Figura 226 - Tensões na fase A de ambos os terminais (ATP).

Figura 227 – Tensões na fase A de ambos os terminais (PS SIMUL).

Figura 228 – Tensões na fase B de ambos os terminais (ATP).

Figura 229 - Tensões na fase B de ambos os terminais (PS SIMUL).

Figura 230 – Tensões na fase C de ambos os terminais (ATP).

Figura 232 – Correntes que fluem pelas fases da linha (ATP).

Figura 233 – Correntes que fluem pelas fases da linha (PS SIMUL).

7.7 Cenário 07 – Cabos Modelo Bergeron (Subterrâneo).

	ATP										
Cenário	Componente		Parametriza	ção							
	LCC (Dados Gerais) (Single Core Cable)	Model Data System type System type Single Core Cable ▼ Number of cables: 3 Cables in □ Cables in □ Cables in □ Cables in □ Surface □ Surface □ Ground □	Ph: 3 Fig. Constants output ng [5/m] [F/m]	dard data (ohm*m) 100 init [Hz) 60 th [m] 2000	Model Type © <u>B</u> ergeron © <u>P</u> I © <u>J</u> Marti © Se <u>m</u> lyen © <u>N</u> oda						
07	LCC (Single Core Cable)	Rin [m] Rout [m] Rho [ohm*m] mu mu (ins) eps (ins) Cabo 1 Position Vertical [m] 1 Horizontal [m] 0	CORE 0 0.0195 3.365E-6 1 1 1 2.85 Cabo 2 Position Vertical [m] [1 Horizontal [m] [0.3	SHEATH 0.03775 0.03797 1.718E-8 1 2.85 Cabo Position Vertical [m] 1 Horizontal [0.6							

Tabela 68 - Parametrizações utilizadas no software ATP.

~		PS Simul	
Cenário	Componente	Parametrização	
07	Cabo (Dados Gerais)	Geral Lin/Cbo Entrada de Dados Geometria Frequência 60,00 Hz Comprimento 2,00 km Efeito Skin Não Transposta Não Tipo Transposição Total Terra Segmentado Não Parâmetros Distribuídos Sim Modelo Calc Z Aproximado (Wedepo Fasor no LOG Mod e Ang Resistividade do Solo 100,0 Ω.m μr 1,00 Modelo p/ condutores aéreos Aproximado (Deri-Sei Modelo p/ condutores subterrâneos Aproximado (Saad) Modelo entre aéreos e subterrâneos Aproximado (Lucca) Modelo Bergeron Interpolar Sim Força Pi p/ Dt > TempoOnda Não	vhl/Wilcox) ▼ mlyen) ▼
	Cabo (Geometria)	Geometria e Arranjos Yesualizar Distribuição Xebo Yebo Config Cabo Camada Descrição Raio Int Raio Ext p µr 0 m 1,00 m 20od e 2lsol × 1ª Condutor Interno 0 m 19,50 m 33,65 p0. Km 1,00 0 m 1,00 m 20od e 2lsol × 1ª Condutor Interno 0 m 19,50 m 33,65 p0. Km 1,00 0 m 1,00 m 20od e 2lsol × 1ª Condutor Revestimento 37,97 m 17,18 p0. Km 1,00 0 m 1,00 m 20 of e 2lsol × 1ª Condutor Condutor Interno 0 m 19,50 m 33,55 p0. Km 1,00 0 coboot 2ª Isolante 37,75 m 1,00 300.0 m 1,00 m 20 of e 2lsol × 1ª Isolante 37,75 m 1,00 2 Condutor Revestimento 37,75 m 1,00 2 Condutor Revestimento 37,75 m 1,00 0,600 m 1,00 m	€r Gnd Del × × 2.85 × 2.85 × 2.85 × 2.85 × 2.85 × 2.85 × 2.85 × 2.85 × 2.85 2.85 2.85 ✓ × 2.85 ✓ × 2.85 ✓

Tabela 69 - Parametrizações utilizadas no software PS Simul.

Para tal validação foi realizada a energização o cabo através de uma fonte AC cossenoidal com amplitude de 138 kV F-F RMS (60 Hz). O terminal remoto foi mantido aberto. A energização foi realizada no instante t = 1 ms. Foram realizadas as leituras das tensões em ambos os terminais do cabo visando verificar os transitórios de energização. O passo utilizado foi de 1 us. Os circuitos modelados estão disposto no tópico (7.8.7).

Figura 234 - Tensões na fase A de ambos os terminais dos cabos (ATP).

Figura 235 - Tensões na fase A de ambos os terminais dos cabos (PS SIMUL).

Figura 236 – Zoom Tensões na fase A de ambos os terminais dos cabos (ATP e PS SIMUL).

Figura 237 – Tensões na fase B de ambos os terminais dos cabos (ATP).

Figura 238 - Tensões na fase B de ambos os terminais dos cabos (PS SIMUL).

Figura 239 - Zoom Tensões na fase B de ambos os terminais dos cabos (ATP e PS SIMUL).

Figura 240 – Tensões na fase C de ambos os terminais dos cabos (ATP).

Figura 241 - Tensões na fase C de ambos os terminais dos cabos (PS SIMUL).

Figura 242 - Zoom Tensões na fase C de ambos os terminais dos cabos (ATP e PS SIMUL).

7.8 Circuitos modelados e curvas cadastradas para as validações realizadas

7.8.1 Cenário 01 – Linha PI monofásica (7.1).

Figura 243 - Circuitos modelados em ambos os softwares.

7.8.2 Cenário 02 – Linha PI trifásica (7.2).

Figura 244 - Circuitos modelados em ambos os softwares.

7.8.3 Cenário 03 – Linha Bergeron monofásica (7.3).

Figura 245 - Circuitos modelados em ambos os softwares.

7.8.4 Cenário 04 – Linha Bergeron trifásica (Transposta) (7.4).

Figura 246 - Circuitos modelados em ambos os softwares.

7.8.5 Cenário 05 – Linha Bergeron trifásica (Cadastro por Geometria) (7.5).

Figura 247 - Circuitos modelados em ambos os softwares.

7.8.6 Cenário 06 – Linha com Modelagem em Frequência trifásica (Cadastro por Geometria) (7.6).

Figura 248 - Circuitos modelados em ambos os softwares.

7.8.7 Cenário 07 – Cabos Modelo Bergeron (Subterrâneo) (7.7).

Figura 249 - Circuitos modelados em ambos os softwares.

8 Capítulo 08 – Máquinas

Este capítulo abrange os principais modelos de máquinas disponibilizados pelo software ATP e seus equivalentes no software PS Simul. A fim de compará-los foram simulados diversos cenários em ambos os softwares.

8.1 Cenário 01 – Partida de um motor de indução - Rotor Gaiola.

Cenário	ATP		PS Simul	
	Componente	Parametrização	Componente	Parametrização
		-		Tipo Rotor → (Gaiola)
	UM3 Induction	Stator Coupling \rightarrow Y	Tm Entrada (DQ) Máq. Assíncrona Gaiola de Esquilo	Conexão \rightarrow Y Aterr.
		Rotor coils \rightarrow d=q=1		Nd=Nq = 1
		Pole Pairs $\rightarrow 2$		N° Polos $\rightarrow 4$
		LMUD → 0,003268 H		Lmd → 0,003268 H
		LMUQ → 0,003268 H		Lmq → 0,003268 H
		Rd (Stator) \rightarrow 0,025 Ω		Rsd \rightarrow 0,025 Ω
		Ld(Stator)→0,000117 H		Llsd → 0,000117 H
01		Rq (Stator)→0,025 Ω		Rsq \rightarrow 0,025 Ω
01		Lq(Stator)→0,000117 H		Llsq → 0,000117 H
		R1 (Rotor)→0,02 Ω		Rrd 001 \rightarrow 0,02 Ω
		L1(Rotor)→0,000117 H		Llrd 001 → 0,000117 H
		R2 (Rotor)→0,02 Ω		Rrq 001 \rightarrow 0,02 Ω
		L2(Rotor)→0,000117 H		Llrq 001 → 0,000117 H
		-		Tipo Inic. → Automática
		SLIP \rightarrow 100 %		Escorreg. Inicial \rightarrow 1 pu
		-		Def. Inércia → J [Kg.m ²]
		HICO → 5,5 Kg.m ²		Mom. Inércia → 5,5 Kg.m ²

Tabela 70 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.

Para tal validação foi realizada a partida de um motor de indução de aproximadamente 100 cv de potência e tensão nominal de 220 V-FF-RMS. Utilizou-se para a energização uma fonte trifásica de tensão com valor nominal do motor e uma constante que representa um conjugado de 301,2 N.m no eixo do motor durante toda a sua partida. Foram obtidas as formas de onda das correntes no estator e velocidade do motor. O passo de tempo utilizado foi de 100 us. Os circuitos modelados estão dispostos no tópico (8.8.1) e as formas de onda obtidas com a simulação nas páginas a seguir.

Figura 250 - Forma de onda das correntes que alimentam o motor no software ATP.

Figura 251 - Forma de onda das correntes que alimentam o motor no software PS Simul.

Figura 252 – Zoom da forma de onda das correntes que alimentam o motor no momento da partida no software ATP.

Figura 253 – Zoom da forma de onda das correntes que alimentam o motor no momento da partida no software PS Simul.

Figura 255 - Forma de onda da velocidade do motor no software PS Simul.

8.2 Cenário 02 – Religamentos e desligamentos de motores em um sistema industrial.

Cenário	ATP		PS Simul	
	Componente	Parametrização	Componente	Parametrização
		-		Tipo Rotor \rightarrow (Gaiola)
	UM3 Induction	Stator Coupling \rightarrow Y	Tm Entrada (DQ) Máq. Assíncrona Gaiola de Esquilo	Conexão → Y Aterr.
		Rotor coils \rightarrow d=q=1		Nd=Nq = 1
		Pole Pairs $\rightarrow 2$		N° Polos $\rightarrow 4$
		LMUD → 0,003268 H		Lmd → 0,003268 H
		LMUQ → 0,003268 H		Lmq → 0,003268 H
		Rd (Stator) $\rightarrow 0,025 \Omega$		Rsd \rightarrow 0,025 Ω
		Ld(Stator)→0,000117 H		Llsd → 0,000117 H
02		Rq (Stator)→0,025 Ω		$Rsq \rightarrow 0,025 \Omega$
02		Lq(Stator)→0,000117 H		Llsq → 0,000117 H
		R1 (Rotor)→0,02 Ω		Rrd 001 \rightarrow 0,02 Ω
		L1(Rotor)→0,000117 H		Llrd 001 → 0,000117 H
		R2 (Rotor)→0,02 Ω		Rrq 001 \rightarrow 0,02 Ω
		L2(Rotor)→0,000117 H		Llrq 001 → 0,000117 H
		-		Tipo Inic. → Automática
		SLIP → 100 %		Escorreg. Inicial \rightarrow 1 pu
		-		Def. Inércia → J [Kg.m ²]
		HICO → 5,5 Kg.m ²		Mom. Inércia → 5,5 Kg.m ²

Tabela 71 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.

Para tal validação foi utilizada uma fonte de tensão de amplitude 220-FF-RMS representando uma barra infinita, onde são conectados 10 motores de aproximadamente 100 cv cada. Nove motores são representados por uma carga RL com potência total de 660 kVA e fator de potência 0,8 indutivo e o décimo motor é representado por uma máquina assíncrona com rotor em gaiola. Inicialmente admite-se que nove motores estão em operação (carga RL), sendo a partida do décimo motor dada no instante t = 1 s. Posteriormente o mesmo motor é desligado no instante t = 5 s. É aplicado à máquina assíncrona um conjugado no valor de 301,2 N.m. Foram obtidas as formas de onda das correntes que o sistema fornece à planta industrial. O passo de tempo utilizado foi de 100 us. Os circuitos modelados estão dispostos no tópico (8.8.2) e as formas de onda obtidas com a simulação nas páginas a seguir.

Figura 256 - Forma de onda das correntes fornecidas ao sistema no software ATP.

Figura 257 - Forma de onda das correntes fornecidas ao sistema no software PS Simul.

Figura 258 – Zoom da forma de onda das correntes fornecidas ao sistema no momento da partida do motor no software ATP.

Figura 259 – Zoom da forma de onda das correntes fornecidas ao sistema no momento da partida do motor no software PS Simul.

8.3 Cenário 03 – Gerador de indução (Rotor Gaiola) alimentando cargas no sistema elétrico.

Cenário	ATP		PS Simul	
	Componente	Parametrização	Componente	Parametrização
		-		Tipo Rotor \rightarrow (Gaiola)
	UM3 Induction	Stator Coupling \rightarrow Y	Tm A Entrada (DQ) C Máq. Assíncrona Gaiola de Esquilo	Conexão → Y Aterr.
		Rotor coils \rightarrow d=q=1		Nd=Nq = 1
		Pole Pairs $\rightarrow 2$		N° Polos $\rightarrow 4$
		LMUD → 0,000778 H		Lmd → 0,000778 H
		LMUQ → 0,000778 H		Lmq → 0,000778 H
		Rd (Stator) \rightarrow 2,33E-3 Ω		Rsd \rightarrow 2,33E-3 Ω
		Ld(Stator)→ 26E-6 H		Llsd → 26E-6 H
03		Rq (Stator) → 2,33E-3 Ω		Rsq → 2,33E-3 Ω
05		Lq(Stator)→ 26E-6 H		Llsq → 26E-6 H
		R1 (Rotor)→ 2,33E-3 Ω		Rrd 001 \rightarrow 2,33E-3 Ω
		L1(Rotor)→ 26E-6 H		Llrd 001 → 26E-6 H
		R2 (Rotor)→ 2,33E-3 Ω		Rrq 001 → 2,33E-3 Ω
		L2(Rotor)→ 26E-6 H		Llrq 001 → 26E-6 H
		-		Tipo Inic. → Automática
		SLIP → -1.75 %		Escorr. Inic. \rightarrow -0,0175 pu
		-		Def. Inércia → J [Kg.m ²]
		HICO → 35 Kg.m ²		Mom. Inércia → 35 Kg.m ²

Tabela 72 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.

Para tal validação foi utilizada uma fonte de tensão de amplitude 480V-FF-RMS representando uma barra infinita, onde é conectada uma carga de 2 MVA e fator de potência de 0,8 indutivo e um gerador de indução de 2 MVA, cujo torque é de 8700 N.m. Foram obtidas as formas de onda das correntes que circulam no sistema. O passo de tempo utilizado foi de 100 us. Os circuitos modelados estão dispostos no tópico (8.8.3) e as formas de onda obtidas com a simulação nas páginas a seguir.

Figura 263 - Forma de onda das correntes que saem do barramento infinito no software PS Simul.

Figura 264 – Forma de onda das correntes que entram na carga no software ATP.

8.4 Cenário 04 – Partida de motor de indução – Rotor Bobinado.

~	ATP		PS Simul	
Cenário	Componente	Parametrização	Componente	Parametrização
04	UM3 Induction	- Stator Coupling → Y Rotor coils → d=q=1 Pole Pairs → 2 LMUD → 0,015556 H LMUQ → 0,015556 H Rd (Stator) → 0,04904 Ω Ld(Stator) → 0,0004894 H Rq (Stator) → 0,0004894 H R1 (Rotor) → 0,0004894 H R2 (Rotor) → 0,0004894 H R2 (Rotor) → 0,0004894 H - SLIP → 100 %	Trada Entrada (DQ) C Máq. Assíncrona Gaiola de Esquilo	Tipo Rotor \rightarrow (Gaiola) Conexão \rightarrow Y Aterr. Nd=Nq = 1 N° Polos \rightarrow 4 Lmd \rightarrow 0,015556 H Lmq \rightarrow 0,015556 H Rsd \rightarrow 0,04904 Ω Llsd \rightarrow 0,0004894 H Rsq \rightarrow 0,04904 Ω Llsq \rightarrow 0,0004894 H Rrd 001 \rightarrow 0,04904 Ω Llrd 001 \rightarrow 0,04904 Ω Llrd 001 \rightarrow 0,04904 Ω Llrq 001 \rightarrow 0,04904 Ω Llrq 001 \rightarrow 0,0004894 H Tipo Inic. \rightarrow Automática Escorr. Inic. \rightarrow 1 pu
		HICO → 11 Kg.m ²		Mom. Inércia \rightarrow 11 Kg.m ²

Tabela 73 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.

Para tal validação foi utilizada uma fonte de tensão de amplitude 440 V-FF-RMS representando uma barra infinita, onde é conectado um motor de indução (75 cv) com rotor bobinado. A ideia deste cenário é demonstrar o efeito da inserção de resistências rotóricas na partida da máquina assíncrona, com isso, serão realizadas duas simulações. Na primeira simulação o rotor da máquina está curto circuitado através de resistências muito pequenas (1 u Ω). Na segunda simulação, a partida do motor é iniciada com resistências de valor 0,3232 Ω no rotor. No instante t = 0,8 s é retirada metade dessa resistência, restando apenas 0,1616 Ω em cada fase do rotor. Por fim, no instante t = 1,9 s todas as resistências do rotor são retiradas. Foram obtidas as formas de onda das correntes e velocidade do motor nas duas simulações e em ambos os softwares. O passo de tempo utilizado foi de 50 us. Os circuitos modelados estão dispostos no tópico (8.8.4) e as formas de onda obtidas com a simulação nas páginas a seguir.

Figura 266 - Forma de onda das correntes do motor para a simulação 01 no software ATP.

Figura 267 - Forma de onda das correntes do motor para a simulação 01 no software PS Simul.

Figura 268 – Forma de onda das correntes do motor para a simulação 02 no software ATP.

Figura 269 - Forma de onda das correntes do motor para a simulação 02 no software PS Simul.

Figura 270 – Zoom da forma de onda das correntes do motor após retirada do primeiro estágio resistivo do rotor no software ATP.

Figura 271 – Zoom da forma de onda das correntes do motor após retirada do primeiro estágio resistivo do rotor no software PS Simul.

Figura 272 – Zoom da forma de onda das correntes do motor após retirada do segundo estágio resistivo do rotor no software ATP.

Figura 273 – Zoom da forma de onda das correntes do motor após retirada do segundo estágio resistivo do rotor no software PS Simul.

Figura 274 – Forma de onda da velocidade do motor para a simulação 01 no software ATP.

Figura 275 - Forma de onda da velocidade do motor para a simulação 01 no software PS Simul.

Figura 276 – Forma de onda da velocidade do motor para a simulação 02 no software ATP.

Figura 277 - Forma de onda da velocidade do motor para a simulação 02 no software PS Simul.

8.5 Cenário 05 – Partida de uma máquina DC com estágios resistivos.

Cenário	ATP		PS Simul	
	Componente	Parametrização	Componente	Parametrização
		Rotor coils \rightarrow d=1 q=1		-
05		Pole Pairs $\rightarrow 2$		N° de Polos → 4
	Rd (Rq (Ld (S) Lq (S) R1 UM8 DC L2	Rd (Stator) → 1,133 Ω Rq (Stator) → 1,133 Ω	Máq. DC	$Ra \rightarrow 1,133 \Omega$
		Ld (Stator) \rightarrow 0,00283 H Lq (Stator) \rightarrow 0,00283 H		La → 0,00283 H
		R1 (Rotor) \rightarrow 1E-6 Ω L1 (Rotor) \rightarrow 1E-6 Ω		Rf \rightarrow 1E-6 Ω
		R2 (Rotor) → 1E-6 H L2 (Rotor) → 1E-6 H		Lf → 1E-6 H
		LMUD →1,244 H LMUQ → 1,244 H		Laf → 1,244 H
		HICO \rightarrow 0,5 kg.m ²		Mom. Inércia → 0,5 kg.m ²

Tabela 74 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.

Para tal validação foi utilizada uma fonte de tensão DC de amplitude 250 V alimentando a armadura de uma máquina DC (3 kW – 250 V) através de uma resistência de 7,991 Ω no instante da partida. O campo da maquina DC é alimentado por uma fonte de tensão de 250 V em série com uma resistência de 492 Ω . O torque aplicado na máquina é diretamente proporcional à velocidade da máquina (T = v/ 14,79266). A partida da máquina é dada no instante t = 0. No instante t = 4,66 s é retirada uma parcela de 5,909 Ω da resistência em série com o circuito de armadura da máquina e no instante 7,9 s retira-se o restante desta resistência. Foram obtidas as formas de onda da corrente de partida e velocidade da máquina DC. O passo de tempo utilizado foi de 50 us. Os circuitos modelados estão dispostos no tópico (8.8.5) e as formas de onda obtidas com a simulação nas páginas a seguir.

Figura 279 – Forma de onda da corrente de partida no software PS Simul.

Figura 280 – Forma de onda da velocidade da máquina no software ATP.

Figura 281 – Forma de onda da velocidade da máquina no software PS Simul.

8.6 Cenário 06 – Curto circuito em sistema isolado alimentado por gerador síncrono (sem controladores de tensão ou potência mecânica).

Cenário		ATP		PS Simul	
	Componente	Parametrização	Componente	Parametrização	
		Volt → 5388,77434 V		VFF RMS (Reg.) →6,6 kV	
		Angle $\rightarrow 0$		VFN Ang (Reg.) \rightarrow 90°	
		Poles \rightarrow 4		N° Polos $\rightarrow 4$	
		HICO \rightarrow 2 kg.m ²	-	Constante Inércia → 2 kg.m ²	
		Freq \rightarrow 60 Hz		Freq \rightarrow 60 Hz	
	ILSM- SM59 No Control	RMVA \rightarrow 5 MVA	A a T T	Sn→ 5 MVA	
		RkV \rightarrow 6,6 kV		VFF \rightarrow 6,6 kV	
		Ra → 0,004 pu		Ra → 0,004 pu	
06		XL → 0,1 pu		$XL \rightarrow 0,1 \text{ pu}$	
00		Xd → 1,8 pu		Xd → 1,8 pu	
		Xq → 1,793 pu	\rightarrow	Xq → 1,793 pu	
		Xd' → 0,166 pu	Máq. Síncrona	Xd' → 0,166 pu	
		Xd'' → 0,119 pu	-	Xd'' → 0,119 pu	
		Xq" → 0,17 pu	-	Xq'' → 0,17 pu	
		Tdo'→ 1.754 s		Tdo'→ 1.754 s	
		Tdo'' → 0,019 s		Tdo'' → 0,019 s	
		Tqo'' → 0,164 s		Tqo'' → 0,164 s	
		X0 → 0,046 pu	1	X0 → 0,046 pu	

Tabela 75 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.

Para tal validação foi simulado um gerador síncrono (5 MVA - 6,6 kV) alimentando uma carga de 4 MVA (FP = 0,8 indutivo). A máquina síncrona é iniciada em regime permanente com tensão nominal em seus terminais. Com isso, ocorre no instante t = 0,1 s uma falta trifásica nos terminais do gerador. Foram obtidas as formas de onda das correntes e tensões do sistema em ambos os softwares. O passo de tempo utilizado foi de 50 us. Os circuitos modelados estão dispostos no tópico (8.8.6) e as formas de onda obtidas com a simulação nas páginas a seguir.

Figura 284 - Forma de onda das correntes de falta no software ATP.

Figura 285 - Forma de onda das correntes de falta no software PS SIMUL

Figura 287 - Forma de onda das correntes de carga no software PS SIMUL.

Figura 289 - Forma de onda das correntes de saída do gerador síncrono no software PS Simul.

8.7 Cenário 07 – Chaveamento de cargas em sistema isolado alimentado por gerador síncrono (com regulação de tensão).

Cenário		ATP		PS Simul	
	Componente	Parametrização	Componente	Parametrização	
		Volt → 5388,77434 V		VFF RMS (Reg.) →6,6 kV	
		Angle $\rightarrow 0$	-	VFN Ang (Reg.) \rightarrow 90°	
		Poles \rightarrow 4	-	N° Polos $\rightarrow 4$	
		HICO \rightarrow 2 kg.m ²	-	Constante Inércia → 2 kg.m ²	
		Freq \rightarrow 60 Hz	-	Freq \rightarrow 60 Hz	
		RMVA \rightarrow 5 MVA		Sn→ 5 MVA	
		RkV \rightarrow 6,6 kV		VFF \rightarrow 6,6 kV	
		Ra → 0,004 pu		Ra → 0,004 pu	
06		XL → 0,1 pu		$XL \rightarrow 0,1 \text{ pu}$	
00		Xd → 1,8 pu		Xd → 1,8 pu	
	SM50.9 Control	SM50.8 Control $Xq \rightarrow 1,793 \text{ pu}$		Xq → 1,793 pu	
	SM39 8 Control $Xd' \rightarrow 0,1$	Xd' → 0,166 pu	Máq. Síncrona	Xd' → 0,166 pu	
		Xd'' → 0,119 pu	-	Xd'' → 0,119 pu	
		Xq" → 0,17 pu	-	Xq'' → 0,17 pu	
		Tdo'→ 1.754 s	-	Tdo'→ 1.754 s	
		Tdo'' → 0,019 s	-	Tdo'' → 0,019 s	
		Tqo'' → 0,164 s	1	Tqo'' → 0,164 s	
		X0 → 0,046 pu	1	X0 → 0,046 pu	

Tabela 76 - Parametrizações utilizadas para as máquinas do ATP e PS Simul.

Para tal validação foi simulado um gerador síncrono (5 MVA - 6,6 kV) alimentando inicialmente uma carga de 2,5 MVA (FP = 0,8 indutivo). No instante t = 1s uma segunda carga de 2,5 MVA (FP = 0,8 indutivo) é inserida no sistema. Com isso, será observado o comportamento do regulador de tensão. A máquina síncrona é iniciada em regime permanente com tensão nominal em seus terminais. Foram obtidas as formas de onda das correntes e tensões do sistema em ambos os softwares. O passo de tempo utilizado foi de 100 us. Os circuitos modelados estão dispostos no tópico (8.8.7) e as formas de onda obtidas com a simulação nas páginas a seguir.

Figura 290 – Forma de onda das tensões nos terminais da máquina síncrona (valores instantâneos e RMS) no software ATP.

Figura 291 – Forma de onda das tensões nos terminais da máquina síncrona (valores instantâneos e RMS) no software PS Simul.

Figura 292 – Zoom da forma de onda das tensões nos terminais da máquina síncrona (valores instantâneos e RMS) no instante da inserção de carga, obtido no software ATP.

Figura 293 – Zoom da forma de onda das tensões nos terminais da máquina síncrona (valores instantâneos e RMS) no instante da inserção de carga, obtido no software PS Simul.

Figura 294 - Forma de onda das correntes de saída da máquina síncrona no software ATP.

Figura 295 - Forma de onda das correntes de saída da máquina síncrona no software PS Simul.

Figura 296 – Zoom da forma de onda das correntes de saída da máquina síncrona no instante da inserção de carga, obtido no software ATP.

Figura 297 – Zoom da forma de onda das correntes de saída da máquina síncrona no instante da inserção de carga, obtido no software PS Simul.

8.8 Circuitos modelados para as validações realizadas

8.8.1 Cenário 01 – Partida de um motor de indução - Rotor Gaiola (8.1).

Figura 298 - Sistema modelado para o cenário 01 em ambos os softwares.

8.8.2 Cenário 02 – Religamentos e desligamentos de motores em um sistema industrial (8.2).

Figura 299 - Sistema modelado para o cenário 02 em ambos os softwares.

8.8.3 Cenário 03 – Gerador de indução (Rotor Gaiola) alimentando cargas no sistema elétrico (8.3).

Figura 300 - Sistema modelado para o cenário 03 em ambos os softwares.

8.8.4 Cenário 04 – Partida de motor de indução – Rotor Bobinado (8.4).

```
ATP
```

PS SIMUL

Figura 301 - Sistema modelado para a simulação 01 do cenário 04 em ambos os softwares.

Figura 302 - Sistema modelado para a simulação 02 do cenário 04 em ambos os softwares.

8.8.5 Cenário 05 – Partida de uma máquina DC com estágios resistivos (8.5).

8.8.6 Cenário 06 – Curto circuito em sistema isolado alimentado por gerador síncrono (sem controladores de tensão ou potência mecânica) (8.6).

Figura 304 - Sistema modelado para a simulação do cenário 06 em ambos os softwares.

8.8.7 Cenário 07 – Chaveamento de cargas em sistema isolado alimentado por gerador síncrono (com regulação de tensão) (8.7).

Figura 305 - Sistema modelado para a simulação do cenário 07 em ambos os softwares.

9 Capítulo 09 - Controle (TACS e FORTRAN)

Este capítulo abrange os principais modelos de medição e controle disponibilizados pelo software ATP e seus equivalentes no software PS Simul. A fim de compará-los, a priori foi confeccionada uma tabela de equivalências onde constam os principais componentes de controle do ATP e seus respectivos no PS Simul incluindo a equivalência de parametrizações, quando aplicável. Por fim, foram simulados diversos cenários em ambos os softwares.

9.1 Tabela de equivalências entre os controles ATP e PS Simul

Inicialmente será apresentada uma tabela com diversas propostas de parametrização para cada componente de controle disponibilizado pelo ATP, assim como o componente e parametrização equivalentes no software PS Simul.

	ATP	PS Simul		
Componente	Parametrização	Componente	Parametrização	
**************************************		→ → - Subtração		
		Divisão		
+) () () () () () () () () () () () () ()		→ → → → → → → → → → → → → → → → → → →		
SQRT(X)		→ G·X ⁱⁿ - Raíz Quadrada		
►_K X*K	K → 1 pu	+ G·X - Ganho	Ganho → 1 pu	
•× × •		→ G·⊭I - Módulo		
X*Y		→		
-X		+ G·X - Ganho negativo		
NOT		4		

Tabela 77 – Equivalência dos blocos de controle da biblioteca do ATP Draw com os componentes do PS Simul.

		Porta inversora	
` >>•			
AND		Porta AND	
` }>-			
OR		Porta OR	
NAND		Porta NAND	
NOR			
Non		Porta NOR	
•y ×>y		Composeder	Tipo Comparação → Sinal A > Sinal B Nível 1 → 1
>		Comparador de Sinais	Nível $2 \rightarrow 0$
>= *		Comparador de Sinais	Tipo Comparação → Sinal A >= Sinal B Nível 1 → 1 Nível 2 → 0
	Ampl > 1 V		Módulo PMS \rightarrow 1 V
Å		· <u> </u>	
Ŷ	$T_{sta} \rightarrow 0 s$	Ţ	Tempo Inicial $\rightarrow 0$ s
DC - 11	$T_{sto} \rightarrow 1 s$	Fonte DC	Tempo Final \rightarrow 1 s
•	Ampl. \rightarrow 1 V		Módulo RMS → 0,707 V
一一个	Freq. \rightarrow 50 Hz		Frequência \rightarrow 50 Hz
¥	$Fi \rightarrow 0^{\circ}$	Ϋ́	Ângulo → 0 °
-	$T_sta \rightarrow 0 s$	Fonta AC	Tempo Inicial $\rightarrow 0$ s
AC - 14	$T_{sto} \rightarrow 1 s$	Folite AC	Tempo Final $\rightarrow 1$ s
	Ampl. → 1 V		Valor Máximo $\rightarrow 1$ V Valor Mínimo $\rightarrow 0$ V
1	$T \rightarrow 0.001 s$	· 1	$\frac{1}{1000} \text{ Frequência} \rightarrow 1000 \text{ Hz}$
ų (ling)	Width $\rightarrow 0.0001$ s	l T	Ciclo de trabalho \rightarrow 10%
= Pulse – 23	$T \text{ sta} \rightarrow 0 \text{ s}$	Fonto quadrada	Tempo Inicial $\rightarrow 0$ s
1 4100 20	$T_{sto} \rightarrow 1 s$	Tonic quadrada	Tempo Final $\rightarrow 1$ s
	Ampl. → 1 V		Valor Máximo $\rightarrow 1$ V Valor Mínimo $\rightarrow 0$ V
Å	T. N. 0.001		Frequência → 1000 Hz
Ŷ	1 -> 0,001 s	Ţ	Ciclo de trabalho \rightarrow 100 %
Ramp – 24	$T_sta \rightarrow 0 s$	Fonte triangular	Tempo Inicial $\rightarrow 0$ s
	$T_{sto} \rightarrow 1 s$		Tempo Final \rightarrow 1 s
► <mark>B</mark> Integral	K → 2 pu	Integrador	Constante de tempo $\rightarrow 1/2$ s
• K-s • Derivative	K → 1 pu	→ sT - Derivador	Constante de tempo $\rightarrow 1$ s

• <u>K</u>	K → 1 pu	+ G	Ganho → 1 pu
Low pass	Tau → 0,1 s	Polo Real	Constante de tempo $\rightarrow 0,1$ s
► <u>R·5</u> 1+T·5	K → 1 pu	G sT 1+sT	Ganho \rightarrow 10 pu
High pass	Tau → 0,1 s	Polo Diferencial	Constante de tempo $\rightarrow 0,1$ s
	-		Lim. saída → Lim Interno
.1.2	$Fix_Lo \rightarrow 0$	- NS)	Limite mínimo $\rightarrow 0$
	$Fix_Hi \rightarrow 10$	→ D(s) -	Limite máximo $\rightarrow 10$
• <u></u>	Ganho \rightarrow 1 pu		Ganho \rightarrow 1 pu
Função Genérica	$N0 \rightarrow 10$	Função Genérica	Cte Numerador $\rightarrow 10$
	$D0 \rightarrow 1$		Cte Denominador $\rightarrow 1$
Freq sensor – 50	Init_F → 60 Hz	Medidor de Frequência	Frequência Ini → 60 Hz
t mer	-	Chave Createrie Externo	Comparação → CTRL
	Gain → 1 pu		Ganho → 1 pu
	T hold $\rightarrow 0$ s		S. Int $\rightarrow 0$ s
Relay switch – 51	$C 0/1 \rightarrow 0$	Chave Comando	$NA/NE \rightarrow NA$
		Externo	Comparação -> CTPI
		Controle Externo	
	Gain - I pu	□ ([↑] ¹ ¹ ¹ ¹)	Ganno → I pu
* * *	$T_{hold} \rightarrow 0 s$	Chave Comando	S. Int $\rightarrow 0$ s
Level switch – 52	$C 0/1 \rightarrow 0$	Externo	$NA/NF \rightarrow NA$
	Delay \rightarrow 0,1 s	Atr.	Delay \rightarrow 0,1 s
Trans delay – 53	Max_T \rightarrow 1 s	Delay	Delay Máx. → 1 s
₊ţ⊥⁺ţ	$T_on \rightarrow 0,1 s$	+Crit PULSE	Ton \rightarrow 0,1 s
• • •	Delay \rightarrow 0,2 s	HAR. DELAY	Delay \rightarrow 0,2 s
Pulse delay – 54	$T_off \rightarrow 0.3s$	Delay Pulso	Toff \rightarrow 0,3 s
• !	Gain → 1 pu	Digitalizador	Ganho → 1 pu
	$N \rightarrow 2$		Níveis → 2
Digitalizer – 55	Range \rightarrow 1 pu	Digitalizador	Máx. Valor → 1 pu
*₽	Gain → 1 pu		Ganho \rightarrow 1 pu
User def nonlin –	CADASTRA TABELA CARACTERÍSTICA	Característica Não Linear	CADASTRA TABELA CARACTERÍSTICA
	-		Estado Inicial → Aberta
~	-	*	N° de Abr/Fch → 36
•~ ^ •	$T_c1 \rightarrow 0,1 s$		Chv 001 \rightarrow 0,1 s
Multi switch – 57	$T_01 \rightarrow 0,2 s$	Chave	Chv 002 \rightarrow 0,2 s
	$T_c18 \rightarrow 10 \text{ s}$ $T_o18 \rightarrow 10,1 \text{ s}$		Chv 035 \rightarrow 10 s Chv 036 \rightarrow 10,1 s

•••	-		Hab. Reset \rightarrow Sim
	Gain \rightarrow 1 pu	G-N(s)	Ganho → 1 pu
	-	Orden = 1	Valor Cte. Numerador $\rightarrow 1$
	$D0 \rightarrow 2$	14 1	Valor Cte. Denominador $\rightarrow 2$
Cont integ – 58	$D1 \rightarrow 25$	Função Genérica	Fator 001 Denominador \rightarrow 2.5
Simple deriv – 59	Gain \rightarrow 1 pu	→ sT - Derivador	Constante de tempo \rightarrow 1 pu
Input IF – 60	Const→ 1 pu	E1 S1 E2 Função S E3 S2 Função IF	Constante → 1 pu
	Lo → -1 pu		Valor mínimo → -1 pu
Signal select – 61	Hi → 1 pu	Seletor de Sinais	Valor máximo → 1 pu
Sample track – 62		Sample and Hold	
Inst min/Max – 63	$B \rightarrow -1 \text{ ou } 1$	Máximo/Mínimo	Ganho → 1
	$B \rightarrow 1 \text{ ou -} 1$	Ent Rs. Max/Min S Globals	Cálculo do → Máximo ou Mínimo
Min/Max track – 64	Reset $\rightarrow 0$	мáx. Mín Globais	Reset $\rightarrow 0$
Acc count – 65	Reset $\rightarrow 0$	Ent Rs Contador S Hd Acumul Contador/ Acumulador	Reset → 0
Rms meter – 66	Freq. → 60 Hz	• FMS - Medidor RMS	Frequência → 60 Hz
		Condição	Hab. Tempo → Não
Initial cond.	Init \rightarrow 1 pu	Condição Inicial	Vinicial \rightarrow 1 pu
General FORTRAN	OUT \rightarrow (4^2) + (2/3)	Função Definida	Função → (4^2) + (2/3)

9.2 Cenário 01 – Análises de parâmetros do sistema elétrico.

Para tal validação foi realizada a modelagem de um sistema alimentado por uma barra infinita (220 V RMS), composto por uma carga indutiva (20 kVA – FP = 0,8) e um banco de capacitores (6 kVAr). Com isso foram utilizados controles para realizar a medição de frequência e tensão no barramento do sistema, assim como a medição das potências que fluem: da fonte para todas as cargas, apenas na carga indutiva e apenas no banco de capacitores. Na tabela abaixo, constam os parâmetros considerados na simulação.

	ATP	PS Simul		
Componente	Parametrização	Componente	Parametrização	
X*Y		→ - ↑ Multiplicador		
Freq sensor – 50	Init_F → 60 Hz	Medidor de Frequência	Frequência Ini → 60 Hz	
Rms meter – 66	Freq. → 60 Hz	• FMS - Medidor RMS	Frequência → 60 Hz	
•-////-• Resistor	RES \rightarrow 3,025 Ω	- `	Resistência → 3,025 Ω	
•-33333•	L → 10.698 mH	<u></u>	Indutância → 10.698e-3 H	
Inductor	Kp → 0 pu	L	-	
•	C → 328,83 uF	·	Capacitância → 328,83e-6 F	
Capacitor	Ks → 0 pu	C	-	
	-		N° Fases $\rightarrow 1$	
U	-]	Tipo Geração → Cosseno	
sh∕O−	Amp → 311,1269 V	⊢⊘ ⊸	Módulo RMS → 220 V	
· •	$f \rightarrow 60 \text{ Hz}$	Ent Son/Cos 10	Frequência → 60 Hz	
AC Type 14	Pha \rightarrow 0 °	$rm sen/cos T\Psi$	Ângulo \rightarrow 0 °	
	A1 \rightarrow 0 V		Offset $\rightarrow 0 V$	

Tabela 78 - Dados do sistema confeccionado em ambos os softwares.

As formas de onda das medições obtidas da simulação seguem abaixo. O passo de tempo utilizado foi de 50 us. Os circuitos modelados estão dispostos no tópico (9.6.1).

Figura 307 - Medição de frequência obtida no software PS SIMUL.

Figura 308 – Medição de tensão obtida no software ATP.

Figura 309 - Medição de tensão obtida no software PS SIMUL.

Figura 311 - Medição da potência que flui para todas as cargas, obtida no software PS SIMUL.

Figura 312 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no software ATP.

Figura 313 – Medições das potências da carga indutiva (vermelho) e capacitiva (verde) obtida no software PS SIMUL.

9.3 Cenário 02 – Modelagem de reguladores de tensão de máquinas.

Para tal validação foi realizada a modelagem de um regulador de tensão utilizado para manter as tensões terminais próximas a tensões de referências a partir da variação da tensão de campo das máquinas. A malha de controle confeccionada segue ilustrada na figura abaixo, juntamente com uma tabela onde constam os parâmetros considerados na simulação.

Figura 314 - Malha do sistema a ser modelado para o cenário 02 em ambos os softwares.

	ATP	PS Simul		
Componente	Parametrização	Componente	Parametrização	
*** ** X - Y		→ → → Subtração		
+ () () () () () () () () () ()		→ → → Soma		
<mark>⊷_K</mark> → X*K	K → 1	G-X - Ganho	Ganho → 1	
Ţ	Ampl. \rightarrow 1 V	٠	Módulo RMS → 1 V	
Ţ	$T_{sta} \rightarrow 1 s$	1 <u>†</u>	Tempo Inicial \rightarrow 1 s	
DC – 11	$T_{sto} \rightarrow 50 \text{ Hz}$	Fonte DC	Tempo Final → 50 Hz	
•- <u></u> <u>*</u> Integral	K → 1,25 pu	Integrador	Constante de tempo → 0,8 s	
	K → 20 pu	J G	Ganho → 20 pu	
Low pass	Tau → 0,5 s	□1+sT Polo Real	Constante de tempo \rightarrow 0,5 s	
► <u>8.5</u>	K → 0,01 pu	G ST	Ganho → 0,01 pu	
High pass	Tau → 1 s	Polo Diferencial	Constante de tempo \rightarrow 1 s	

Tabela 79 - Dados do sistema confeccionado em ambos os softwares.

	-		Hab Reset → Não
	Ganho → 1		Ganho $\rightarrow 1$
.1 2	$N0 \rightarrow 1$	G 1+sT1	-
	N1 \rightarrow 0,1 s	1 + sT2	Cte Tempo - Avanço \rightarrow 0,1 s
	$D0 \rightarrow 1$	Bloco Avanço	-
Função Genérica	D1 \rightarrow 0,2 s	e Atraso	Cte Tempo – Atraso \rightarrow 0,2 s
	Fix_Lo → -1000		Limite Apl Saída -> Nenhum
	Fix_Hi → 1000		Emite Api. Saida 7 Nemium
	-		Controle Externo →Não
.1 2	Ganho → 1		-
\$ E	N0 \rightarrow 1	+_←	-
	$D0 \rightarrow 1$		-
Função Genérica	$Fix_Lo \rightarrow 0$	Limitador	Limite mínimo $\rightarrow 0$
	Fix_Hi → 1		Limite máximo $\rightarrow 1$

O controle foi submetido a um degrau unitário em sua entrada e foi observada a saída do controlador. O passo de tempo utilizado foi de 200 us. Os circuitos modelados estão dispostos no tópico (9.6.2) e as formas de onda obtidas com a simulação seguem abaixo.

Figura 315 – Forma de onda obtida no software ATP.

Figura 316 – Forma de onda obtida no software PS Simul.

9.4 Cenário 03 – Controle Chave AC – Eletrônica de Potência

Para tal validação foi realizada a modelagem de um controle para geração de pulsos a uma Chave AC que é um componente capaz de variar a impedância vista pela fonte através da variação do ângulo de disparo alpha dos tiristores. Neste cenário, a fonte AC tem magnitude de 240 V/60 Hz e a carga tem valores $R = 20 \Omega$ e L = 0,07074 H. A geração de pulsos é realizada através da comparação do ângulo Alpha que é provido por um controlador PI (proporcional integral) com o ângulo da tensão do sistema.

A	TP	PS Simul		
Componente	Parametrização	Componente	Parametrização	
X - Y / X + Y		Subtração/Subtração		
►K X*K	K → 20 pu	G-X - Ganho	Ganho → 20 pu	
•	Ampl. → 360 V		Valor Máximo \rightarrow 360 V Valor Mínimo \rightarrow 0 V	
÷	T → 0,01667 s		Frequência → 60 Hz Ciclo de trabalho → 100%	
Ramp – 24	$T_{sta} \rightarrow 0 s$	Fonte triangular	Tempo Inicial $\rightarrow 0$ s	
	$T_{sto} \rightarrow 10 s$	i one unugun	Tempo Final \rightarrow 10 s	
• <u>K</u> Integral	K → 1000 pu	Integrador	Constante de tempo \rightarrow 0.001 s	
• B	K → 1 pu	4 <u>6</u>	Ganho → 1 pu	
Low pass	Tau → 0,1 s	<u>1+s</u> T Polo Real	Constante de tempo \rightarrow 0,1 s	
	-		Controle Externo →Não	
• <u></u> •	Ganho \rightarrow 1 pu	1_	-	
	$N0 \rightarrow 1$	- →=+→-	-	
Eunoão Conómico	$\begin{array}{c} D0 \neq 1 \\ Fix \ Lo \Rightarrow 0 \end{array}$	Limitador	- Limite mínimo $\rightarrow 0$	
Fulição Generica	Fix_Hi → 360		Limite máximo → 360	
	Delay → 0,00833 s	^{≯Em_} s⊺_	Delay → 0,00833 s	
Trans delay – 53	$Max_T \rightarrow 0,00833 \text{ s}$	→Aur Delay	Delay Máx. → 0,00833 s	
Input IF – 60	Const→ 0	E1 S1 E2 Punção S E3 S2 Função IF	Constante $\rightarrow 0$	

Tabela 80 – Dados d	o sistema	de controle	confeccionado e	m ambos os softwares
	0 sistema	ac controle	conneccionado es	m amous us som wares.

Rms meter – 66	Freq. → 60 Hz	• RMS - Medidor RMS	Frequência → 60 Hz						
	Ampl. →		Módulo RMS →						
Ţ	6 V / 2 V / 0 V / 1 V	*	6 V / 2 V / 0 V / 1 V						
(\overline{L})	T sta →	- <u>+</u>	Tempo Inicial \rightarrow						
Ť	0 s / 1,5 s	Ļ	0 s / 1,5 s						
DC – 11			Tompo Final > 10 a						
	1_sto 7 10 s	Fonte DC	$1 \text{ empo Final} \rightarrow 10 \text{ s}$						
•_^^^		<u> </u>							
, , , , , , , , , , , , , , , , , , ,	RES $\rightarrow 20 \Omega$	7 7 7	Resistência $\rightarrow 20 \Omega$						
Resistor		R							
•-77777-•	L → 70.735 mH	<u>-</u>	Indutância → 70.735e-3 H						
Inductor	Kp → 0 pu	L	-						
U			Tipo Geração → Seno						
	Amp → 339.411 V	<u> </u>	Módulo RMS → 240 V						
" 🕓	f → 60 Hz		Frequência → 60 Hz						
AC Type 14	Pha → -90 °	Fint Sen/Cos $I\Phi$	Ângulo → 0 °						
+-///-+	Ron = $10e-3 \Omega$		Ron = $10e-3 \Omega$						
• • • • • • • • • • • • • • • • • • •	Roff = $10e3 \Omega$	- 	Roff = $10e3 \Omega$						
•-~~+_[3]-•	Vig = 0 V	Tirrioton	Tens. Mín. p. Fechar = 0 V						
Valve	Ihold = 0 A	1 11 15107	Corr. Máx. p. Abrir = 0 A						

O controle modelado visa controlar a corrente de carga em 6 A RMS inicialmente e no instante t = 1,5 seg. a corrente de referência do controle é alterada para 4 A RMS. O passo de tempo utilizado foi de 50 us. Os circuitos modelados estão dispostos no tópico (9.6.3) e as formas de onda obtidas com a simulação seguem abaixo.

Figura 317 – Forma de onda do ângulo de saída do controlador obtida no ATP.

Figura 318 - Forma de onda do ângulo de saída do controlador obtida no PS SIMUL.

Figura 320 - Forma de onda da corrente RMS na carga obtida no PS SIMUL.

Figura 321 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no ATP.

Figura 322 – Forma de onda das tensões de entrada e saída para Iref = 6 A RMS, obtida no PS SIMUL.

Figura 323 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no ATP.

Figura 324 – Forma de onda das tensões de entrada e saída para Iref = 4 A RMS, obtida no PS SIMUL.

9.5 Cenário 04 – Modelagem de funções de proteção.

Para tal validação foi realizada a modelagem da função de proteção 27 (subtensão), utilizando os componentes de controle de ambos os softwares.

	ATP		PS Simul						
Componente	Parametrização	Componente	Parametrização						
►K X*K	K → 0,0005 pu / 0,0087 pu	→ G·X - Ganho	Ganho → 0,0005 pu / 0,0087 pu						
Rms meter – 66	Freq. → 60 Hz	Medidor RMS	Frequência → 60 Hz						
+→ ↓ × X − Y		→ → → Subtração							
1	Ampl. → 1 V / 0 V / 0.9 V / 0.5 V	*	Módulo RMS → 1 V / 0 V / 0.9 V / 0.5 V						
L C	$T_sta \rightarrow 0 s$	Ţ	Tempo Inicial $\rightarrow 0$ s						
DC – 11	T_sto \rightarrow 10 s	Fonte DC	Tempo Final $\rightarrow 10$ s						
†	Ampl. \rightarrow 10 V		-						
(T)	$T \rightarrow 10 s$	Tempo –	-						
Ť	$T_sta \rightarrow 0 s$	Fonte Tempo	-						
Ramp – 24	$T_{sto} \rightarrow 10 s$	Ponte Tempo	-						
	$Const \rightarrow 0$		Constante $\rightarrow 0$						
Sample track – 62		Sample and Hold	Tipo Amostr. → Sample and Hold						
Dr OR		Porta OR							
NOT		->- Porta inversora							
•••///•• Resistor	RES \rightarrow 264,5 Ω / 352.67 Ω	- [▲] MM- R	Resistência \rightarrow 264,5 Ω / 352.67 Ω						
•mm-	L → 2806,43 mH / 467,73 mH	 L	Indutância → 2806,43e-3 H / 467,73e-3 H						
	$Kp \rightarrow 0$	2							
	-		$N^{\circ} \text{ Fases} \rightarrow 1$						
U	-		$11po \ \text{Geraçao} \rightarrow \text{Seno}$						
	Anip $7 323209.1193 V$		$\frac{1}{10000000000000000000000000000000000$						
AC Type 14	$\frac{1 \rightarrow 00 \text{ Hz}}{\text{Pha} \rightarrow -00 ^{\circ}}$	Fnt Sen/Cos 1Φ	$\widehat{A}ngulo \rightarrow 0^{\circ}$						
ne rype ri	$A1 \rightarrow 0 V$		$Offset \rightarrow 0 V$						
1									

Tabela 81 – Dados do sistema de controle confeccionado em ambos os softwares.

	-		Entrada de Dados → Matriz RLC						
	-		Transposta → Não						
	-		Parâmetros Distribuídos → Não						
●- LINE -●	-	<u>. </u>	Modelo → RL						
RLC Pi Equiv	-	Linha	N° Fases $\rightarrow 1$						
	$R \rightarrow 1.06 \Omega$	Linna	$R \rightarrow 1,06 \Omega$						
	L → 23.9 mH		L → 23,9e-3 H						
	$C \rightarrow 0 \text{ uF}$		-						
	-		N° Fases $\rightarrow 1$						
, I	-	÷	Controle Fechamento \rightarrow Sinal Externo						
•~~ -•	-		Corrente Máxima p/ Abrir → 0 A						
TACS Switch	CLOSED $\rightarrow 1$	Chave Ctrl Ext	Estado inicial → Fechada						
	-		N° Fases $\rightarrow 1$						
	-		Controle Fechamento \rightarrow Tempo Interno						
<u>_×_</u>	Imar $\rightarrow 0$ A	·~_	Corrente Máxima p/ Abrir → 0 A						
	-		Estado inicial \rightarrow Aberta						
Switch Time Ctrl	Tcl \rightarrow 0,1 s	Chave Ctrl Ext	Tempo Chv 001 \rightarrow 0,1 s						
	Top →10 s		-						

O sistema de potência deste cenário é composto por um circuito equivalente (230 kV – 6000 MVA) que alimenta continuamente uma carga indutiva (200 MW e 50 MVAr). No instante t = 0,1 seg. foi simulada a inserção de uma nova carga no sistema (150 MW e 300 MVAr) através de um alimentador (R = 1,06 Ω e L = 23,9 mH), visando provocar uma subtensão no barramento principal. Foi parametrizado apenas um elemento na função 27, com pickup igual a 0,9 pu e temporização de 0,5 segundos para atuação. O passo de tempo utilizado foi de 50 us. Os circuitos modelados estão dispostos no tópico (9.6.4) e as formas de onda obtidas com a simulação seguem abaixo.

Figura 325 - Forma de onda da tensão em pu no barramento principal, obtida no ATP.

Figura 326 - Forma de onda da tensão em pu no barramento principal, obtida no PS SIMUL.

9.6 Circuitos modelados para as validações realizadas

9.6.1 Cenário 01 – Análises de parâmetros do sistema elétrico (9.2).

Figura 329 - Sistema modelado para o cenário 01 em ambos os softwares.

9.6.2 Cenário 02 – Modelagem de controladores de excitação de máquinas (9.3).

Figura 330 - Sistema modelado para o cenário 02 em ambos os softwares.

9.6.3 Cenário 03 – Controle Chave AC – Eletrônica de Potência (9.4).

Figura 331 - Sistema modelado para o cenário 03 em ambos os softwares.

9.6.4 Cenário 04 – Modelagem de funções de proteção (9.5).

Figura 332 - Sistema modelado para o cenário 04 em ambos os softwares.

10 Capítulo 10 - Análise de sistemas mais completos com ambos os softwares

Finalizando a comparação entre os modelos oferecidos por ambos os softwares, serão confeccionados alguns exemplos mais complexos, com blocos de diferentes grupos em um só sistema de potência/controle. Tal análise visa confrontar os resultados diante de sistemas genéricos que interligam diversas modalidades de componentes.

10.1 Análise de Tensões de Restabelecimento Transitórias (TRT) em sistemas.

Neste cenário, foi simulado parte de um sistema elétrico com nível de tensão de 69 kV, onde representam-se duas linhas de transmissão paralelas por sua geometria, uma linha PI através de circuitos RLC, um transformador real de 69 kV / 13,8 kV e disjuntores do sistema com a representação de suas capacitâncias de fuga. Com isso, simulou-se a retirada de uma falta do sistema elétrico no instante t = 0 s e foram observadas as correntes nas chaves CH1 e CH2, as tensões do primário (F-F) e secundário (F-N) do transformador e a tensão no ponto de retirada da falta. No ponto de retirada a falta, foi analisado se a envoltória permitida para a TRT foi respeitada. Neste caso a envoltória tem os seguintes parâmetros: kV Crista \rightarrow 13,5 kV // TCTR \rightarrow 0,38 kV/us // T retardo \rightarrow 10 us // kV retardo \rightarrow 3,44 kV. Abaixo seguem os circuitos modelados, as geometrias parametrizadas nas linhas e as formas de onda das tensões e correntes medidas em ambos os softwares. O passo de tempo adotado na simulação foi de 0,1 us.

Figura 333 - Circuito modelado no software ATP.

Figura 334 – Circuito modelado no software PS Simul.

Figura 335 - Geometria da linha parametrizada no software ATP.

Z V Z I VI D' ' D' ' D '	- Y		Definiçã	ies	Resultados											
Entrada de Dados	Geometria	• ^	Geome	tria e /	Arranjos											
Frequência 60,000000 Hz		∇M	ousliss	r Dietribuicão										-		
Comprimento	9,600000 km		8 1	sualiza												
Efeito Skin	Sim	•	Pto	Fas	e Xt	Yt	Ymin	Rext	Bint	RMG	RDc	ur	Nc	Diam Arj	Ang	De
Transposta	Não	•	001	1	-1.81 m	9.47 m	7.47 m	11.77 mm	0 m	0 m	101.3 mΩ/km	1.00	1	0 m	0 *	×
Tipo Transposição	Total	-	002	2	1.01 m	0.70 m	6.70 m	11.77 mm	0	0	101.2 mO &m	1.00	1	0	0.*	
Terra Segmentado	Não	•	002	2	1,01 m	0,7011	0,70 m	11,22 000	0.00	0.00	101,31052/K0	1,00	1	0.00	0	- L
Parâmetros Distribuídos	Sim	•	003	3	1,81 m	11,10 m	9,10 m	11,77 mm	Om	0 m	101,3 mΩ/km	1,00	1	Om	0 *	×
Modelo Calc Z	Aproximado (Wedepohl/Wilco	d 🕶 👘	004	4	0 m	14,25 m	12,25 m	8,15 mm	0 m	0 m	211,3 mΩ/km	1,00	1	0 m	0.	×
Fasor no LOG	Mod e Ang	•														
Representação do Retorno pelo	Solo															
Resistividade do Solo	100,000000 Ω.m															
μ	1,000000															
Modelo p/ condutores aéreos	Aproximado (Deri-Semlyen)	•														
Modelo p/ condutores subterrâneos	Aproximado (Saad)	-														
Modelo entre aéreos e subterrâneos	Aproximado (Lucca)	-														
Modelo																
Modelo	Bergeron	-														
Interpolar	Sim	-														
Força Pip/Dt > TempoOnda	Não	•														
Dados Modelo Pi																
Dados Modelo Frq Modal																
Dados Modelo Frq Fase																
Geometria																
Visualizar Distribuição																
	Diŝmatra da Arrania	-														
Definição do Arranjo	Diametro do Arranjo															

Figura 336 - Geometria da linha parametrizada no software PS Simul.

10.1.1 Formas de onda das correntes na chave CH1.

Figura 337 - Forma de onda das correntes na chave CH1 obtidas no ATP.

Figura 338 - Forma de onda das correntes na chave CH1 obtidas no PS Simul.

10.1.2 Formas de onda das correntes na chave CH2.

Figura 339 - Forma de onda das correntes na chave CH2 obtidas no ATP.

Figura 340 - Forma de onda das correntes na chave CH2 obtidas no PS Simul.

Figura 342 - Forma de onda das tensões no primário do transformador obtidas no PS Simul.

Figura 343 – Zoom da forma de onda das tensões no primário do transformador no ATP.

Figura 344 - Zoom da forma de onda das tensões no primário do transformador no PS Simul.

10.1.4 Formas de onda das tensões F-N no secundário do transformador TR1.

Figura 345 - Forma de onda das tensões no secundário do transformador obtidas no ATP.

Figura 346 - Forma de onda das tensões no secundário do transformador obtidas no PS Simul.

Figura 347 - Zoom da forma de onda das tensões no secundário do transformador no ATP.

Figura 348 - Zoom da forma de onda das tensões no secundário do transformador no PS Simul.
10.1.5 Análise da envoltória da TRT.

Figura 350 - Forma de onda das tensões no ponto da retirada da falta obtidas no PS Simul.

Figura 351 - Zoom da forma de onda das tensões no ponto da retirada da falta no ATP.

Figura 352 – Zoom da forma de onda das tensões no ponto da retirada da falta no PS Simul.

Figura 353 – Análise da envoltória TRT no ATP.

Figura 354 – Análise da envoltória TRT no PS Simul.

Figura 356 - Zoom da Análise da envoltória TRT no PS Simul.

10.2 Chaveamento de bancos capacitivos.

Neste exemplo, foi simulado um sistema elétrico composto por um arranjo equivalente (69 kV – 1000 MVA) que é interligado a um banco capacitivo de 6 MVAr através de um transformador de 69 kV/13,8 kV (SUBESTAÇÃO), conectado, por sua vez, a um sistema representativo de um consumidor composto por um transformador 13,8 kV/ 465 V e um banco capacitivo de 0,06 MVAr. Foi considerado para as simulações um transformador com núcleo ideal. Com isso foram simulados dois diferentes cenários de chaveamentos dos bancos capacitivos a fim de estudar a influência dos mesmos no sistema elétrico modelado. As tensões nos terminais dos bancos da subestação e do consumidor serão monitoradas. O passo de tempo adotado nas simulações foi de 10 us. Seguem abaixo os circuitos modelados em ambos os softwares.

Figura 357 - Circuito modelado no software ATP.

Figura 358 - Circuito modelado no software PS Simul.

10.2.1 Cenário 01 - Banco de capacitores do consumidor é chaveado

Neste cenário foi simulado o chaveamento do banco de capacitores do consumidor no instante 0,01 s, estando já conectado ao sistema o banco da subestação.

Figura 359 - Forma de onda das tensões nos terminais do banco da subestação no ATP.

Figura 360 – Forma de onda das tensões nos terminais do banco da subestação no PS Simul.

Figura 361 - Forma de onda das tensões nos terminais do banco do consumidor no ATP.

Figura 362 - Forma de onda das tensões nos terminais do banco do consumidor no PS Simul.

10.2.2 Cenário 02 - Banco de capacitores da subestação é chaveado

Neste cenário foi simulado o chaveamento do banco de capacitores da subestação no instante 0,01 s, já estando conectado o banco do consumidor.

Figura 363 - Forma de onda das tensões nos terminais do banco da subestação no ATP.

Figura 364 - Forma de onda das tensões nos terminais do banco da subestação no PS Simul.

Figura 366 - Forma de onda das tensões nos terminais do banco do consumidor no PS Simul.

10.3 Simulação de descarga atmosférica em uma linha de transmissão.

Neste exemplo, foi simulado um sistema elétrico composto por cinco trechos idênticos de linhas de 1 km de comprimento, estando um dos trechos finais conectado a uma carga resistiva trifásica de 400 ohms e o outro sendo mantido aberto. Diante disso, foi aplicada uma descarga atmosférica na fase A entre o trecho 01 e 02, tal descarga sendo representada pela fonte Dupla exponencial (Surge type 15) com os parâmetros: Amp $\rightarrow 20334$ // A $\rightarrow -14203,84$ // B $\rightarrow -4883365.54$. Após tal aplicação foram mensuradas as tensões na fase A em todos os trechos, assim como as correntes que percorrem a carga resistiva de 400 ohms. O passo de tempo adotado nas simulações foi de 0,1 us. Todos os trechos foram representados pelo modelo de Bergeron e a geometria cadastrada em cada um deles segue nas tabelas abaixo, assim como os sistemas modelados em ambos os softwares.

Figura 367 - Circuito modelado no software ATP.

Figura 368 - Circuito modelado no software PS Simul.

Line/Cable Data: C:\Program Files\ATP\project\lcc\L3fase.alc	Line/Cable Data: C:\Program Files\ATP\project\lcc\L3fase.alc									×	
Model Data	Ŀ	<u>M</u> ode	l <u>D</u> ata								
System type Standard data	[Ph.no.	Rin	Rout	Resis	Horiz	Vtower	Vmid		-
		#		[cm]	[cm]	[ohm/km DC]	[m]	[m]	[m]		
Length [km]		1	1	0	1.177	0.1013	-1.854	9.901	8.901		
✓ Skin effect	-	2	2	0	1.177	0.1013	1.809	8.701	7.701		
□ Segmented ground	-	3	3	0	1.177	0.1013	1.809	14.25	12.25		
Eal transf. matrix	-	4	4	0	0.015	0.2113	U	14.23	13.25		
Model Type C Bergeron C El C JMarti C Semiyen C Noda											
Comment: Order O Labet Hide			<u>A</u> dd ro	w	<u>D</u> elete la	st row	isert row	сору		↑ Move ↓	F
		<u>0</u> ł		<u>C</u> ancel	Import	<u>S</u> ave As	Run <u>A</u> TI	P Vie	<u>w</u>	/erify <u>E</u> dit icon <u>F</u>	<u>+</u> elp

Figura 369 – Geometria parametrizada em cada um dos trechos no software ATP.

≣ \$↓ \$↑ @\$ =<0 - @s -	7 -		Definiçã	ies	Resultados											
Entrada de Dados	Geometria	T A	Geome	tria e A	manios											
Frequência	60.000000 Hz		40 M	and o r	- Dratification of a											
Comprimento	1,000000 km		∃ <u>K</u> ∨I	sualiza	r Distribulçao											· -
Efeito Skin	Sim	•	Pto	Fase	e Xt	Yt	Ymin	Rext	Rint	RMG	RDc	ur	Nc	Diam Arj	Ang	Del
Transposta	Não	•	001	1	-1.85 m	9.90 m	8.90 m	11.77 mm	0 m	0 m	101.3 mΩ/km	1.00	1	0 m	0.	X
Tipo Transposição	Total	*	002	2	1.81 m	8.70 m	7.70 m	11.77 mm	0.m	0	101.3 mO/4 m	1.00	1	0	0.0	H
Terra Segmentado	Não	•	002	-	1,01	11.10	10.10	11,11100	0	0.00	101.0	1.00	4	0	0.0	H
Parâmetros Distribuídos	Sim	•	003	3	1,81 m	11,10 m	10,10 m	11,77 mm	Um	Um	101,3 ms2/km	1,00	1	Um	0.	×
Modelo Calc Z	Aproximado (Wedepohl/Wilcox)	•	004	4	0 m	14,25 m	13,25 m	8,15 mm	0 m	0 m	211,3 mΩ/km	1,00	1	0 m	0.	×
Fasor no LOG	Mod e Ang	•														
Representação do Retorno pelo S	ialo															
Resistividade do Solo	100,000000 Ω.m															
μ	1,000000															
Modelo p/ condutores aéreos	Aproximado (Deri-Semiyen)	•														
Modelo p/ condutores aereos Modelo p/ condutores subterrâneos	Aproximado (Saad)	-														
Modelo p/ condutores aereos Modelo p/ condutores subterrâneos Modelo entre aéreos e subterrâneos	Aproximado (Deri-Semiyen) Aproximado (Saad) Aproximado (Lucca)	• •														
Modelo p/ condutores aereos Modelo p/ condutores subterrâneos Modelo entre aéreos e subterrâneos Modelo	Aproximado (Den-Semiyen) Aproximado (Saad) Aproximado (Lucca)	• •														
Modelo p/ condutores aereos Modelo p/ condutores subterrâneos Modelo entre aéreos e subterrâneos Modelo Modelo	Aproximado (Deri-Semiyen) Aproximado (Saad) Aproximado (Lucca) Bergeron	•														
Modelo p/ condutores aereos Modelo p/ condutores subterrâneos Modelo entre aéreos e subterrâneos Modelo Interpolar	Aproximado (Den-semiyen) Aproximado (Saad) Aproximado (Lucca) Bergeron Sim	• • •														
Modelo p/ condutores aeroos Modelo p/ condutores subterrâneos Modelo entre aéreos e subterrâneos Modelo Interpolar Força Pi p/ Dt> TempoOnda	Aproximado (Lein-semijen) Aproximado (Saad) Aproximado (Lucca) Bergeron Sim Não	• •														
Modelo p/ condutores aereos Modelo p/ condutore subternâneos Modelo entre aéreos e subternâneos Modelo Interpolar Força Pip / Dt. > TempoOnda Dados Modelo Pi	Aproximado (Leiri-semiyen) Aproximado (Saad) Aproximado (Lucca) Bergeron Sim Não	• • •														
Modelo p/ condutores sereos Modelo p/ condutores subterâneos Modelo entre aéreos e subterâneos Modelo Interpolar Força Pip / D1 > TempoDnda Dados Modelo Pi Dados Modelo Piq Dados Modelo Piq Model	Aproximado (Leeri-semiyen) Aproximado (Lucca) Bergeron Sim Não	• • •														
Modelo p/ condutores aderesa Modelo p/ condutores subterrâneos Modelo entre aéreos e subterrâneos Modelo Interpolar Força Pi p/ D1 > TempoDinda Dados Modelo Fri Dados Modelo Frig Fase Dados Modelo Frig Fase	Aproximado (Learis-emigen) Aproximado (Lucca) Aproximado (Lucca) Bergeron Sim Não	• • •														
Modelo p/ condutores avereas Modelo / condutores subterrâneos Modelo Modelo Interpolar Força Pi p/ Di > TempoInda Dados Modelo Pi Dados Modelo Fi Dados Modelo Fi Dados Modelo Fi Seconetria	Aproximado (Jenr-semyen) Aproximado (Lucca) Aproximado (Lucca) Bergeron Sim Não	• • •														
Modelo p/ condutores aderesa Modelo p/ condutores subterâneos Modelo Interpolar Força Pip/ DI > TempoOnda Dados Modelo Fr(Model Dados Modelo Fr(Model Model) Seconetria	Aproximado (Den-semiyen) Aproximado (Saad) Aproximado (Lucca) Bergeron Sim Não															
Modelo p/ condutores aderesa Modelo p/ condutores aderesa Modelo entre aéreos e subterrâneos Modelo Interpolar Força Pi p/ DL > TempoDinda Dados Modelo Pi Dados Modelo Pi (Dados Modelo Pi (Dados Modelo Pi (Dados Modelo Pi (Dados Distibuição Dados Distribuição Definição do Arranjo	Aproximado (Den-sempen) Aproximado (Lucca) Bergeron Sim Não	• • •														
Modelo p/ condutores subterâneos Modelo p/ condutores subterâneos Modelo entre séreos e subterâneos Modelo Interpolar Porça Pi p/ Dt > TempoDnda Dados Modelo Frq Model Dados Modelo Frq Model Definição do Amerijo Definição do InduAncio	Aproximado (Den-semiyeri) Aproximado (Lucca) Bergeron Sim Não Diámetro do Artanjo Raio Ext e Raio Int	• • • •														
Modelo p/ condutores aderesa Modelo p/ condutores aderesa Modelo entre aéreos e subterâneos Modelo Interpolar Força Pi p/ D1 > TempoDinda Dados Modelo Fri Dados Modelo Fri Fri Picture, So da Induáncia	Aproximado (Denr-semper) Aproximado (Lucca) Bergeron Sim Não Diâmetro do Arranjo Raio Ext e Raio Int	• • • • •														
Modelo p/ condutores subterñanos Modelo p/ condutores subterñanos Modelo entre aéros e subterñanos Modelo Interpolor Foro, 87 p/ Dr > TempoDnda Dados Modelo Pr Dados Modelo Pr Dados Modelo Pr Boartos Dados Modelo Pr Secuentia Definição da Antanjo Definição da Indufância Hefinição da Indufância	Aproximado (Denr-semper) Aproximado (Lucca) Bergeron Sim Não Diámetro do Arranjo Raio Ext e Raio Int	• • • • • • • • • • • • • • • • • • •														
Modelo p/ condutores aderesa Modelo or condutores aderesa Modelo entre aéreos e subterâneos Modelo Interpolar Parca Pip / D > TempoDnda Dados Modelo Fra Dados Modelo Fra Modal Dados Modelo Fra Fase Geometria Visualaza Distribuição Definição da Indutância efine o tipo de entrada de dados para cá po Copoles	Aproximado (Denr-semper) Aproximado (Lucca) Bergeron Sim Não Diâmetro do Arranjo Raio Ext e Raio Int	V V V V V V V														
Modelo p/ condutores subterfaneos Modelo p/ condutores subterfaneos Modelo entre aéreos e subterfaneos Modelo Interpolar Força Pi p/ Di > TempoDinda Dados Modelo Pi Dados Modelo Pi Dados Modelo Pi Boatos Modelo Pi Definição do Antanjo Definição do Antanjo Definição do Antanjo Definição do Indutância eterio e top de entrada de dados para cá po Opções mie triz > 0 ,	Aproximado (Denr-senyer) Aproximado (Lucce) Bergeron Sim Não Diâmetro do Arranjo Raio Ext e Raio Int Iculo da indutância interna do cond	V V V V V V V														
Modelo p/ condutores auterianeos Modelo p/ condutores subterâneos Modelo entre séreos e subterâneos Modelo Interpolar Podos Modelo Francis Dados Modelo Francis Dados Modelo Francis Dados Modelo Francis Dados Modelo Francis Dados Modelo Francis Definição do Anarijo Definição do Indutâncis efinição da Indutâncis	Aproximado (Denr-semper) Aproximado (Lucca) Bergeron Sim Não Diámetro do Atranjo Raio Ext e Raio Int	• • • • • • • • • • • • • • • • • • •														
Modelo pr condutores aderes Modelo pr condutores aderes Modelo Modelo Modelo Modelo Modelo Modelo Parca Pir y Dt > TempoDnda Dados Modelo Fr Dados Modelo Fr Modelo Fr	Aproximado (Denr-semper) Aproximado (Lucca) Bergeron Sim Não Diâmetro do Arranjo Raio Ext e Raio Int Iculo da indutância interna do cond	• • • • • • • • • • • • • • • • • • •														

Figura 370 – Geometria parametrizada em cada um dos trechos no software PS Simul.

10.3.1 Formas de onda das tensões na fase A em todos os trechos.

Figura 372 - Forma de onda das tensões na fase A de todos os trechos no PS Simul.

Figura 374 – Zoom da forma de onda das tensões na fase A de todos os trechos no PS Simul.

10.3.2 Formas de onda das correntes na carga resistiva.

Figura 376 - Forma de onda das correntes na carga resistiva no PS Simul.

Figura 378 – – Zoom da forma de onda das correntes na carga resistiva no PS Simul.

10.4 Energização de transformadores trifásicos.

Neste exemplo, foi simulada a energização de um transformador trifásico 13,8 kV / 380 V em dois diferentes cenários. No primeiro deles o transformador é energizado no instante t = 0,1 s sem qualquer tipo de controle no fechamento das chaves, com isso, podem-se constatar altos valores de corrente de energização. No segundo cenário foi feita a energização controlada do transformador, de forma a eliminar a corrente de inrush. Para isso, as fases A e B foram energizadas quando a tensão Vab passava por valor de pico e a fase C energizada posteriormente quando a tensão Vab passava por valor nulo. Em ambos os cenários foram mensuradas as correntes de primário do transformador. O passo de tempo adotado nas simulações foi de 5 us. Os dados utilizados na parametrização do transformador foram os seguintes:

	ento primario → 13,8 kV
ensao nominal enrolame	énto secundario → 380 v ária N Dalta
Conexao prim Conexão segundá	$ario \rightarrow Della$
Resistância enrolam	ento $1 \rightarrow 10.665 \Omega$
Resistência enrolam	$\frac{1}{2} \rightarrow 2.71 \text{ mO}$
Indutância enrolame	nto $1 \rightarrow 110.08 \text{ mH}$
Indutância enrolam	ento $2 \rightarrow 27.98$ uH
Resistência ramo mag	$ratização \rightarrow 10 MO$
Curve de s	aturação.
<u>Curva de s</u>	aturação:
<u>Curva de s</u> I (A)	<u>aturação:</u> Φ(Wb)
<u>Curva de sa</u> I (A) 229,2e-3	aturação: Φ(Wb) 51,80
<u>Curva de sa</u> I (A) 229,2e-3 447,6e-3	aturação: Φ(Wb) 51,80 55,04
<u>Curva de se</u> I (A) 229,2e-3 447,6e-3 1,72	aturação: Φ(Wb) 51,80 55,04 58,28
<u>Curva de sa</u> <u>I (A)</u> 229,2e-3 447,6e-3 1,72 4,3	Φ(Wb) 51,80 55,04 58,28 60,22
<u>Curva de sa</u> <u>I (A)</u> 229,2e-3 447,6e-3 1,72 4,3 23,88	Φ(Wb) 51,80 55,04 58,28 60,22 64,10
<u>Curva de sa</u> <u>I (A)</u> 229,2e-3 447,6e-3 1,72 4,3 23,88 47,76	Φ(Wb) 51,80 55,04 58,28 60,22 64,10 65,66
I (A) 229,2e-3 447,6e-3 1,72 4,3 23,88 47,76 119,4	Φ(Wb) 51,80 55,04 58,28 60,22 64,10 65,66 67,89
<u>Curva de sa</u> <u>I (A)</u> 229,2e-3 447,6e-3 1,72 4,3 23,88 47,76 119,4 238,8	Φ(Wb) 51,80 55,04 58,28 60,22 64,10 65,66 67,89 69,38

10.4.1 Cenário 01 - Energização não controlada.

Figura 379 - Circuito modelado em ambos os softwares.

Figura 381 – Forma de onda das correntes no primário do transformador no software PS Simul.

10.4.2 Cenário 02 - Energização controlada.

Figura 382 - Circuito modelado no software ATP.

Figura 383 - Circuito modelado no software PS Simul.

Figura 384 – Forma de onda das correntes no primário do transformador no software ATP.

Figura 385 – Forma de onda das correntes no primário do transformador no software PS Simul.

10.5 Fenômeno de ferrorressonância em transformadores trifásicos.

Neste exemplo, um transformador alimentado na tensão de 13,8 kV através de um cabo subterrâneo (representado por circuito PI \rightarrow R = 67,26 mΩ; L = 47,6 uH; C = 22,4 nF) foi submetido a um curto circuito fase-fase, no lado da baixa tensão. O disjuntor do barramento de baixa atua isolando o curto circuito. A proteção de fusíveis do ramal de alimentação do transformador atua também e queima dois fusíveis relativos às fases em curto circuito. Dessa forma podemos visualizar o fenômeno da ferrorressonância pelas formas de onda de tensões do transformador. O passo de tempo adotado nas simulações foi de 50 us. Os dados utilizados na parametrização do transformador foram os seguintes:

Tensao nominal enrolan	tento secundário \rightarrow 380 V
Conexao pril Conexão accund	mario \rightarrow Delta
Collexao secullo Rosistôncia onrole	ario \rightarrow Estreta (1)
Resistência enrola	amento $2 \rightarrow 515 \pm 0$
Indutância enrolar	mento $1 \rightarrow 353.6 \text{ mH}$
Indutância enrolai	mento $2 \rightarrow 89.90 \text{ uH}$
Resistência ramo m	agnetização $\rightarrow 2 M\Omega$
Curve de	coturoção
<u>Curva de</u>	saturação:
<u>Curva de</u> I (A)	<u>saturação:</u> Φ(Wb)
<u>Curva de</u> I (A) 0,041	<u>saturação:</u> Φ(Wb) 51,81
<u>Curva de</u> I (A) 0,041 0,41	<u>saturação:</u> Φ(Wb) 51,81 58,41
<u>Curva de</u> I (A) 0,041 0,41 4,1	<u>saturação:</u> <u>Φ(Wb)</u> 51,81 58,41 63,28
<u>Curva de</u> I (A) 0,041 0,41 4,1 41	saturação: Φ(Wb) 51,81 58,41 63,28 65,53

10.5.1 Forma de onda das tensões no primário do transformador..

Figura 386 - Forma de onda das tensões no primário do transformador no software ATP.

Figura 387 - Forma de onda das tensões no primário do transformador no software PS Simul.

Figura 388 – Zoom da forma de onda das tensões no primário do transformador no software ATP.

Figura 389 - Zoom da forma de onda das tensões no primário do transformador no software PS Simul.

10.6 Religamento de linhas de transmissão.

Neste exemplo, uma linha de transmissão de modelo Bergeron é dividida em dois trechos de 80 km e alimentada por uma tensão de 138 kV. Com isso, foram simulados dois diferentes cenários de religamento para a linha, o primeiro fazendo o desligamento e religamento da linha com chaves ideais e o segundo utilizando também uma resistência de pré-inserção, a fim de verificar as influências desta nas formas de onda de tensão do sistema. Em ambos os cenários, foram verificadas as tensões no terminal do trecho 02 que está aberto. O passo de tempo adotado nas simulações foi de 1 us. Abaixo seguem as informações da geometria e demais informações utilizadas na parametrização de cada um dos trechos da linha.

del <u>D</u> ata	Mo	del <u>D</u> at	a								
System type Standard data		Ph.no.	Rin	Rout	Resis	Horiz	Vtower	Vmid	Separ	Alpha	NB
Overhead Line	#		[cm]	[cm]	[ohm/km DC]	[m]	[m]	[m]	[cm]	[deg]	1
Transposed	1	1	0	1.4795	0.06	-10	34.5	17.5	45.7	45	4
Auto bundling	2	2	0	1.4795	0.06	0	39.4	22.4	45.7	45	4
I✓ Skin effect	3	3	0	1.4795	0.06	10	34.5	17.5	45.7	45	4
I <u>S</u> egmented ground (* <u>M</u> etric	4	4	0	0.6945	0.64	8.65	44.4	27.4	0	0	1
Heal transf. matrix	5	4	0	0.6945	0.64	-8.65	44.4	27.4	0	0	1
fodel Type © gergeron C gMarti C Semilyen C Noda			1								
nment: Order: 0 Label: Hide		Add	IOW	Delete la:	t row	nsert row d	сору			<u>†</u>	Move

Figura 390 - Informações parametrizadas em cada um dos trechos no software ATP.

Geral Lin/Cbo	Y •		Definiçã	5es	Resultados											
		^	Geome	tria e A	rranjos											
Entrada de Dados	Geometria	•	YV	isualizar	r Distribuição										+	v -
Frequência	60,000000 Hz		a .													
Comprimento	80,000000 km	- 10	Pto	Fase	Xt	Yt	Ymin	Rext	Rint	RMG	RDc	ur	Nc	Dist Arj	Ang	Del
Efeito Skin	Sim	•	001	1	-10,00 m	34,50 m	17,50 m	14,80 mm	0 m	0 m	60,00 mΩ/km	1,00	4	457,0 mm	45,00 °	×
Transposta	Sim	•	002	2	Ωm	39.40 m	22.40 m	14.80 mm	Ωm	0 m	60.00 mO/km	1.00	4	457 0 mm	45.00 *	T
Tipo Transposição	Total	•	002	-	10.00	04.50	12.50	14,00	0	0	00,00 11327 Kill	1,00	-	457,0 1111	45,00 *	음.
Terra Segmentado	Não	•	003	3	10,00 m	34,50 M	17,50 m	14,80 mm	UM	Um	60,00 ms2/km	1,00	4	457,0 mm	45,00	×
Parâmetros Distribuídos	Sim	-	004	4	8,65 m	44,40 m	27,40 m	6,95 mm	0 m	0 m	0,640 Ω/km	1,00	1	0 m	0.	×
Modelo Calc Z	Aproximado (Wedepohl/Wilco») 🕶	005	4	-8,65 m	44,40 m	27,40 m	6,95 mm	0 m	0 m	0,640 Ω/km	1,00	1	0 m	0 *	×
Fasor no LOG	Mod e Ang	•		-				1.1								<u> </u>
Representação do Retorno pelo	Solo															
Resistividade do Solo	1,000000 KΩ.m															
μ	1,000000															
Modelo p/ condutores aéreos	Aproximado (Deri-Semlyen)	-														
Modelo p/ condutores subterrâneos	Aproximado (Saad)	-														
Modelo entre aéreos e subterrâneos	Aproximado (Lucca)															
Modelo																
Modelo	Bergeron	•														
Interpolar	Sim	•														
Força Pip/Dt > TempoOnda	Não	•														
E Dados Modelo Pi																
Dados Modelo Frq Modal																
E Dados Modelo Frq Fase																
Geometria																
Visualizar Distribuição																
	Distancia antra conditatore	_														

Figura 391 – Informações parametrizadas em cada um dos trechos no software PS Simul.

10.6.1 Cenário 01 – Desligamento e religamento com chaves ideais.

Neste cenário a linha, que já estava inicialmente energizada, é desligada no instante 0,02 s e religada novamente no instante de 0,05 s. Os circuitos modelados em ambos os softwares seguem abaixo.

Figura 392 - Circuitos modelados em ambos os softwares.

Figura 394 - Formas de onda das tensões do terminal aberto no software PS Simul.

10.6.2 Cenário 02 – Desligamento e religamento com resistência de pré-inserção.

Neste cenário a linha, que já estava inicialmente energizada, é desligada no instante 0,02 s e religada novamente com uma resistência de 300 ohms em série no instante 0,05 s. Por fim, a resistência é retirada do sistema pelo fechamento de uma chave ideal no instante 0,06 s. Os circuitos modelados em ambos os softwares seguem abaixo.

Figura 395 - Circuitos modelados em ambos os softwares.

Figura 396 - Formas de onda das tensões do terminal aberto no software ATP.

Figura 397 - Formas de onda das tensões do terminal aberto no software PS Simul.

10.7 Ensaios de contingências em sistemas elétricos de transmissão.

Neste exemplo, foi modelado um sistema de transmissão com nove barramentos em ambos os softwares. Com isso, foram simulados diferentes cenários de contingências em diversas barras do sistema elétrico de transmissão, a fim de comparar respostas de tensões e correntes. Em todas as simulações foi adotado um passo de tempo de 100 us. Abaixo segue a modelagem do sistema em ambos os softwares com informações de parametrizações utilizadas nas cargas, transformadores e sistemas alimentadores. São mostradas também, em uma tabela, as parametrizações de todas as linhas de transmissão utilizadas.

Figura 398 - Circuito modelado no software ATP.

Figura 399 - Circuito modelado no software PS Simul.

LINHA	PARAMETRIZAÇÃO
	$R+ \rightarrow 52.9 \text{ m}\Omega/\text{km}$
	$R0 \rightarrow 158,7 \text{ m}\Omega/\text{km}$
D4 D5	L+ → 1,19 mH/km
D4-D3	L0 → 3,58 mH/km
	C+ → 8,83 nF/km
	C0 → 26,48 nF/km
	R+ → 89,93 mΩ/km
	R0 → 269,8 mΩ/km
D1 D6	L+ → 1,29 mH/km
D4-D0	L0 → 3,87 mH/km
	C+ → 7,92 nF/km
	C0 → 23,77 nF/km
	$R+ \rightarrow 170,0 \text{ m}\Omega/\text{km}$
	$R0 \rightarrow 510,0 \text{ m}\Omega/\text{km}$
D5 D7	L+ → 2,26 mH/km
B2-B7	L0 → 6,78 mH/km
	C+ → 15,34 nF/km
	C0 → 46,02 nF/km
	$R+ \rightarrow 206,3 \text{ m}\Omega/\text{km}$
	$R0 \rightarrow 618,9 \text{ m}\Omega/\text{km}$
D¢ Dû	L+ → 2,39 mH/km
В0-В9	$L0 \rightarrow 7,16 \text{ mH/km}$
	C+ → 17,95 nF/km
	C0 → 53,85 nF/km
	$R+ \rightarrow 56,2 \text{ m}\Omega/\text{km}$
	$R0 \rightarrow 168,6 \text{ m}\Omega/\text{km}$
D7 D0	L+ \rightarrow 1,26 mH/km
В/-Вб	L0 → 3,78 mH/km
	C+ → 9,34 nF/km
	C0 → 28,01 nF/km
	R+ → 62,95 mΩ/km
	$R0 \rightarrow 188,9 \text{ m}\Omega/\text{km}$
DO DO	L+ \rightarrow 1,41 mH/km
D0-D9	L0 → 4,24 mH/km
	C+ → 10,48 nF/km
	$C0 \rightarrow 31,44 \text{ nF/km}$

Tabela 82 – Dados utilizados na parametrização das linhas do sistema de transmissão.

10.7.1 Cenário 01 - Falta monofásica na barra B8.

Neste cenário, aplicou-se no sistema uma falta A-T no barramento B8 no instante t = 0,05 s. A contingência foi eliminada no sistema no instante t = 0,1 s. Com isso foram realizadas as medições de tensão nos barramentos B4, B5, B6 e B8, além da corrente de falta na fase A. A figura abaixo ilustra o local da falta.

Figura 400 - Figura que ilustra o local de aplicação da contingência no cenário atual.

Figura 402 - Formas de onda das tensões do barramento B4 no software PS Simul.

Figura 404 - Zoom das formas de onda das tensões do barramento B4 no software PS Simul.

Figura 406 - Formas de onda das tensões do barramento B5 no software PS Simul.

Figura 408 - Zoom das formas de onda das tensões do barramento B5 no software PS Simul.

Figura 410 - Formas de onda das tensões do barramento B6 no software PS Simul.

Figura 412 - Zoom das formas de onda das tensões do barramento B6 no software PS Simul.

Figura 414 - Formas de onda das tensões do barramento B8 no software PS Simul.

Figura 416 - Zoom das formas de onda das tensões do barramento B8 no software PS Simul.

Figura 417 – Forma de onda da corrente de falta na fase A no software ATP.

Figura 418 - Forma de onda da corrente de falta na fase A no software PS Simul.

Figura 420 – Zoom da forma de onda da corrente de falta na fase A no software PS Simul.

10.7.2 Cenário 02 - Falta bifásica na barra B5.

Neste cenário, aplicou-se no sistema uma falta A-B no barramento B5 no instante t = 0,05 s. A contingência foi eliminada no sistema no instante t = 0,1 s. Com isso foram realizadas as medições de tensão nos barramentos B4, B5, B6 e B8.

Figura 421 - Figura que ilustra o local de aplicação da contingência no cenário atual.

Figura 423 - Formas de onda das tensões do barramento B4 no software PS Simul.

Figura 425 - Zoom das formas de onda das tensões do barramento B4 no software PS Simul.

Figura 427 - Formas de onda das tensões do barramento B5 no software PS Simul.

Figura 429 - Zoom das formas de onda das tensões do barramento B5 no software PS Simul.

Figura 431 - Formas de onda das tensões do barramento B6 no software PS Simul.

Figura 433 - Zoom das formas de onda das tensões do barramento B6 no software PS Simul.

Figura 434 - Formas de onda das tensões do barramento B8 no software ATP.

Figura 435 - Formas de onda das tensões do barramento B8 no software PS Simul.

Figura 437 – Zoom das formas de onda das tensões do barramento B8 no software PS Simul.

10.7.3 Cenário 03 - Falta trifásica na barra B4.

Neste cenário, aplicou-se no sistema uma falta A-B-C no barramento B4 no instante t = 0,05 s. A contingência foi eliminada no sistema no instante t = 0,1 s. Com isso foram realizadas as medições de tensão nos barramentos B4, B5, B6 e B8.

Figura 438 - Figura que ilustra o local de aplicação da contingência no cenário atual.

Figura 440 - Formas de onda das tensões do barramento B4 no software PS Simul.

Figura 442 - Zoom das formas de onda das tensões do barramento B4 no software PS Simul.

Figura 443 – Formas de onda das tensões do barramento B5 no software ATP.

Figura 444 - Formas de onda das tensões do barramento B5 no software PS Simul.

Figura 446 - Zoom das formas de onda das tensões do barramento B5 no software PS Simul.

Figura 448 - Formas de onda das tensões do barramento B6 no software PS Simul.

Figura 450 – Zoom das formas de onda das tensões do barramento B6 no software PS Simul.

Figura 451 - Formas de onda das tensões do barramento B8 no software ATP.

Figura 452 - Formas de onda das tensões do barramento B8 no software PS Simul.

Figura 454 - Zoom das formas de onda das tensões do barramento B8 no software PS Simul.
10.7.4 Cenário 04 – Falta trifásica terra na barra B6.

Neste cenário, aplicou-se no sistema uma falta A-B-C-T no barramento B6 no instante t = 0,05 s. A contingência foi eliminada no sistema no instante t = 0,1 s. Com isso foram realizadas as medições de tensão nos barramentos B4, B5, B6 e B8, além das correntes de falta nas fases.

Figura 455 - Figura que ilustra o local de aplicação da contingência no cenário atual.

Figura 457 - Formas de onda das tensões do barramento B4 no software PS Simul.

Figura 459 - Zoom das formas de onda das tensões do barramento B4 no software PS Simul.

Figura 460 - Formas de onda das tensões do barramento B5 no software ATP.

Figura 461 - Formas de onda das tensões do barramento B5 no software PS Simul.

Figura 463 – Zoom das formas de onda das tensões do barramento B5 no software PS Simul.

Figura 464 – Formas de onda das tensões do barramento B6 no software ATP.

Figura 465 - Formas de onda das tensões do barramento B6 no software PS Simul.

Figura 467 – Zoom das formas de onda das tensões do barramento B6 no software PS Simul.

Figura 469 - Formas de onda das tensões do barramento B8 no software PS Simul.

Figura 471 – Zoom das formas de onda das tensões do barramento B8 no software PS Simul.

Figura 473 - Formas de onda das correntes de falta no software PS Simul.

Figura 475 – Zoom das formas de onda das correntes de falta no software PS Simul.

11 Capítulo 11 – Conclusões

Neste documento, foram realizadas modelagens e simulações de mais de 80 cenários diferentes envolvendo todos os principais componentes disponibilizados pelo ATP e seus equivalentes no software PS Simul, sendo abrangidos modelos de:

- Fontes;
- Chaves;
- Elementos Passivos;
- Elementos Não Lineares;
- Transformadores;
- Linhas;
- Cabos;
- Máquinas;
- Sistemas de Controle;
- Entre outros.

Além disso, o documento englobou a modelagem e simulação de sistemas completos com o intuito de reproduzir estudos de transitórios tipicamente realizados.

É válido enaltecer que, durante o processo de confecção deste documento, foi realizada uma criteriosa comparação entre todas as formas de onda obtidas de cada cenário nos softwares ATP e PS Simul, sobrepondo-as e verificando a igualdade de picos e variações de cada um dos sinais resultantes das simulações. Em todas as comparações feitas observou-se a equivalência entre as formas de onda resultantes de ambos os softwares.

Dessa forma, foi proporcionada ao leitor uma experiência de análise de equivalência entre os softwares ATP (*Alternative Transients Program*) e PS Simul (*Power System Simulator*), onde ficou comprovado que a solução empregada por cada um dos programas abordados e os resultados obtidos por estes são, de fato, equivalentes e confiáveis.

12 Capítulo 12 – Referências

[1] Conprove Engenharia, Indústria e Comércio, PS SIMUL: Software para Modelagem do Sistema de Potência e Simulação de Transitórios Eletromagnéticos. Acesso em 08 de março de 2019, em: <u>http://www.conprove.com.br/pub/i_ps_simul.html</u>